Definition.
Block matrices
A block matrix or a partitioned matrix is a matrix composed of sub-matrices. Block matrices can be constructed by slicing a matrix horizontally and vertically.
Example.
Block matrix with four sub-matrices
Consider the block matrix $\boldsymbol{R}$ below:
$$\boldsymbol{R}=
\begin{pmatrix}
\color{red}3&\color{red}2&\color{red}5&\color{blue}1&\color{blue}2\\
\color{red}1&\color{red}6&\color{red}3&\color{blue}2&\color{blue}4\\
\color{red}1&\color{red}3&\color{red}0&\color{blue}0&\color{blue}3\\
\color{green}1&\color{green}9&\color{green}1&\color{purple}2&\color{purple}1\\
\color{green}0&\color{green}7&\color{green}2&\color{purple}9&\color{purple}0\\
\end{pmatrix}=
\begin{pmatrix}
\color{red}\boldsymbol{A}&\color{blue}\boldsymbol{B}\\
\color{green}\boldsymbol{C}&\color{purple}\boldsymbol{D}
\end{pmatrix}$$
Here, we have sliced $\boldsymbol{R}$ horizontally and vertically thereby decomposing $\boldsymbol{R}$ into $4$ sub-matrices: $\boldsymbol{A}$, $\boldsymbol{B}$, $\boldsymbol{C}$ and $\boldsymbol{D}$.
Note that the matrix $\boldsymbol{R}$ defined below is not a block matrix because the shapes of the sub-matrices do not match up:
$$\boldsymbol{R}=
\begin{pmatrix}
\color{red}3&\color{red}2&\color{red}5&\color{blue}1&\color{blue}2\\
\color{red}1&\color{red}6&\color{red}3&\color{blue}2&\color{blue}4\\
\color{red}1&\color{red}3&\color{red}0&\color{blue}0&\color{blue}3\\
\color{green}1&\color{green}9&\color{purple}1&\color{purple}2&\color{purple}1\\
\color{green}0&\color{green}7&\color{purple}2&\color{purple}9&\color{purple}0\\
\end{pmatrix}$$
For a matrix to be a block matrix, the partitioning must be a straight vertical or horizontal line.
Example.
Representing a matrix as a collection of column vectors
In linear algebra, we often represent matrices as a collection of column vectors. For instance, consider the following block matrix:
$$\boldsymbol{A}=\begin{pmatrix}
2&4&2&9\\
3&1&8&3\\
1&7&2&5
\end{pmatrix}=
\begin{pmatrix}
\vert&\vert&\vert&\vert\\
\boldsymbol{a}_1&\boldsymbol{a}_2&\boldsymbol{a}_3&\boldsymbol{a}_4\\
\vert&\vert&\vert&\vert
\end{pmatrix}
$$
Here, $\boldsymbol{A}$ is a block matrix because we have sliced the matrix vertically $4$ times.
Theorem.
Transpose of a block matrix
Consider the following block matrix:
$$\boldsymbol{R}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{C}&\boldsymbol{D}
\end{pmatrix}$$
The transpose of $\boldsymbol{R}$ is:
$$\boldsymbol{R}^T=
\begin{pmatrix}
\boldsymbol{A}^T&\boldsymbol{C}^T\\
\boldsymbol{B}^T&\boldsymbol{D}^T
\end{pmatrix}$$
Proof. Consider the following block matrix:
$$\boldsymbol{R}=\begin{pmatrix}
\color{red}a_{11}&\color{red}a_{12}&\color{red}\cdots&\color{red}a_{1m}&\color{blue}b_{11}&\color{blue}b_{12}&\color{blue}\cdots&\color{blue}b_{1n}\\
\color{red}a_{21}&\color{red}a_{22}&\color{red}\cdots&\color{red}a_{2m}&\color{blue}b_{21}&\color{blue}b_{22}&\color{blue}\cdots&\color{blue}\color{blue}b_{2n}\\
\color{red}\color{red}\vdots&\color{red}\vdots&\color{red}\smash\ddots&\color{red}\vdots&
\color{blue}\vdots&\color{blue}\vdots&\color{blue}\smash\ddots&\color{blue}\vdots\\
\color{red}a_{s1}&\color{red}a_{s2}&\color{red}\cdots&\color{red}a_{sm}&
\color{blue}b_{s1}&\color{blue}b_{s2}&\color{blue}\cdots&\color{blue}b_{sn}\\
\color{green}c_{11}&\color{green}c_{12}&\color{green}\cdots&\color{green}c_{1m}&
\color{purple}d_{11}&\color{purple}d_{12}&\color{purple}\cdots&\color{purple}d_{1n}\\
\color{green}c_{21}&\color{green}c_{22}&\color{green}\cdots&\color{green}c_{2m}&
\color{purple}d_{21}&\color{purple}d_{22}&\color{purple}\cdots&\color{purple}d_{2n}\\
\color{green}\vdots&\color{green}\vdots&\color{green}\smash\ddots&\color{green}\vdots
&\color{purple}\vdots&\color{purple}\vdots&\color{purple}\smash\ddots&\color{purple}\vdots\\
\color{green}c_{t1}&\color{green}c_{t2}&\color{green}\cdots&\color{green}c_{tm}&
\color{purple}d_{t1}&\color{purple}d_{t2}&\color{purple}\cdots&\color{purple}d_{tn}\\
\end{pmatrix}$$
We now take the transpose:
$$\begin{align*}
\boldsymbol{R}^T&=\begin{pmatrix}
\color{red}a_{11}&\color{red}a_{21}&\color{red}\cdots&\color{red}a_{s1}&
\color{green}c_{11}&\color{green}c_{21}&\color{green}\cdots&\color{green}c_{t1}\\
\color{red}a_{12}&\color{red}a_{22}&\color{red}\cdots&\color{red}a_{s2}&
\color{green}c_{12}&\color{green}c_{22}&\color{green}\cdots&\color{blue}\color{green}c_{t2}\\
\color{red}\color{red}\vdots&\color{red}\vdots&\color{red}\smash\ddots&\color{red}\vdots&
\color{green}\vdots&\color{green}\vdots&\color{green}\smash\ddots&\color{green}\vdots\\
\color{red}a_{1m}&\color{red}a_{2m}&\color{red}\cdots&\color{red}a_{sm}&
\color{green}c_{1m}&\color{green}c_{2m}&\color{green}\cdots&\color{green}c_{tm}\\
\color{blue}b_{11}&\color{blue}b_{21}&\color{blue}\cdots&\color{blue}b_{s1}&
\color{purple}d_{11}&\color{purple}d_{21}&\color{purple}\cdots&\color{purple}d_{t1}\\
\color{blue}b_{12}&\color{blue}b_{22}&\color{blue}\cdots&\color{blue}b_{s2}&
\color{purple}d_{12}&\color{purple}d_{22}&\color{purple}\cdots&\color{purple}d_{t2}\\
\color{blue}\vdots&\color{blue}\vdots&\color{blue}\smash\ddots&\color{blue}\vdots
&\color{purple}\vdots&\color{purple}\vdots&\color{purple}\smash\ddots&\color{purple}\vdots\\
\color{blue}b_{1n}&\color{blue}b_{2n}&\color{blue}\cdots&\color{blue}b_{sn}&
\color{purple}d_{1n}&\color{purple}d_{2n}&\color{purple}\cdots&\color{purple}d_{tn}\\
\end{pmatrix}\\
&=\begin{pmatrix}
\color{red}\boldsymbol{A}^T&\color{green}\boldsymbol{C}^T\\
\color{blue}\boldsymbol{B}^T&\color{purple}\boldsymbol{D}^T
\end{pmatrix}
\end{align*}$$
This completes the proof.
■
Theorem.
Product of block matrices (1)
Suppose we have $m\times{n}$ matrix $\boldsymbol{A}$ and $n\times{m}$ matrix $\boldsymbol{B}$ where $\boldsymbol{B}$ is a block matrix composed of sub-matrices $\boldsymbol{B}_1$ and $\boldsymbol{B}_2$ like so:
$$\boldsymbol{B}=
\begin{pmatrix}
\boldsymbol{B}_1\\\boldsymbol{B}_2
\end{pmatrix}$$
The matrix product $\boldsymbol{BA}$ can be expressed as:
$$\boldsymbol{BA}=
\begin{pmatrix}
\boldsymbol{B}_1\boldsymbol{A}\\
\boldsymbol{B}_2\boldsymbol{A}
\end{pmatrix}$$
Proof. Let $m\times{n}$ matrix $\boldsymbol{A}$ be:
$$\boldsymbol{A}=
\begin{pmatrix}
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert\\
\color{blue}\boldsymbol{a}_1&\color{blue}\boldsymbol{a}_2&
\color{blue}\cdots&\color{blue}\boldsymbol{a}_n\\
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert\\
\end{pmatrix}$$
Let $n\times{m}$ matrix $\boldsymbol{B}$ be:
$$\boldsymbol{B}=
\begin{pmatrix}
\color{purple}-&\color{purple}\boldsymbol{b}_1&\color{purple}-\\
\color{purple}-&\color{purple}\boldsymbol{b}_2&\color{purple}-\\
\color{purple}\vdots&\color{purple}\vdots&\color{purple}\vdots\\
\color{purple}-&\color{purple}\boldsymbol{b}_k&\color{purple}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+1}&\color{green}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+2}&\color{green}-\\
\color{green}\vdots&\color{green}\vdots&\color{green}\vdots\\
\color{green}-&\color{green}\boldsymbol{b}_n&\color{green}-\\
\end{pmatrix}$$
Where the sub-matrices are:
$${\color{purple}\boldsymbol{B}_1}=
\begin{pmatrix}
\color{purple}-&\color{purple}\boldsymbol{b}_1&\color{purple}-\\
\color{purple}-&\color{purple}\boldsymbol{b}_2&\color{purple}-\\
\color{purple}\vdots&\color{purple}\vdots&\color{purple}\vdots\\
\color{purple}-&\color{purple}\boldsymbol{b}_k&\color{purple}-
\end{pmatrix},\;\;\;\;\;\;
{\color{green}\boldsymbol{B}_2}=
\begin{pmatrix}
\color{green}-&\color{green}\boldsymbol{b}_{k+1}&\color{green}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+2}&\color{green}-\\
\color{green}\vdots&\color{green}\vdots&\color{green}\vdots\\
\color{green}-&\color{green}\boldsymbol{b}_n&\color{green}-
\end{pmatrix}$$
The matrix product $\boldsymbol{BA}$ is therefore:
$$\boldsymbol{BA}=
\begin{pmatrix}
{\color{purple}\boldsymbol{b}_1}\cdot\color{blue}\boldsymbol{a}_1&{\color{purple}\boldsymbol{b}_1}\cdot\color{blue}\boldsymbol{a}_2&\cdots&{\color{purple}\boldsymbol{b}_1}\cdot\color{blue}\boldsymbol{a}_n\\
{\color{purple}\boldsymbol{b}_2}\cdot\color{blue}\boldsymbol{a}_1&{\color{purple}\boldsymbol{b}_2}\cdot\color{blue}\boldsymbol{a}_2&\cdots&{\color{purple}\boldsymbol{b}_2}\cdot\color{blue}\boldsymbol{a}_n\\
\vdots&\vdots&\smash\ddots&\vdots\\
{\color{purple}\boldsymbol{b}_k}\cdot\color{blue}\boldsymbol{a}_1&{\color{purple}\boldsymbol{b}_k}\cdot\color{blue}\boldsymbol{a}_2&\cdots&{\color{purple}\boldsymbol{b}_k}\cdot\color{blue}\boldsymbol{a}_n\\
{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{blue}\boldsymbol{a}_1&{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{blue}\boldsymbol{a}_2&\cdots&{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{blue}\boldsymbol{a}_n\\
{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{blue}\boldsymbol{a}_1&{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{blue}\boldsymbol{a}_2&\cdots&{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{blue}\boldsymbol{a}_n\\
\vdots&\vdots&\smash\ddots&\vdots\\
{\color{green}\boldsymbol{b}_{n}}\cdot\color{blue}\boldsymbol{a}_1&{\color{green}\boldsymbol{b}_{n}}\cdot\color{blue}\boldsymbol{a}_2&\cdots&{\color{green}\boldsymbol{b}_{n}}\cdot\color{blue}\boldsymbol{a}_n
\end{pmatrix}=
\begin{pmatrix}
\color{purple}\boldsymbol{B}_1\color{blue}\boldsymbol{A}\\
\color{green}\boldsymbol{B}_2\color{blue}\boldsymbol{A}
\end{pmatrix}$$
This completes the proof.
■
Theorem.
Product of block matrices (2)
Consider an $m\times{n}$ block matrix $\boldsymbol{A}$ and an $n\times{m}$ block matrix $\boldsymbol{B}$ below:
$$\boldsymbol{A}=
\begin{pmatrix}
\boldsymbol{A}_1&\boldsymbol{A}_2
\end{pmatrix},\;\;\;\;\;\;\;
\boldsymbol{B}=
\begin{pmatrix}
\boldsymbol{B}_1\\\boldsymbol{B}_2
\end{pmatrix}$$
Where:
$\boldsymbol{A}_1$ is an $m\times{k}$ sub-matrix.
$\boldsymbol{A}_2$ is an $m\times(n-k)$ sub-matrix.
$\boldsymbol{B}_1$ is an $k\times{m}$ sub-matrix
$\boldsymbol{B}_2$ is an $(n-k)\times{m}$ sub-matrix.
The product $\boldsymbol{BA}$ can be expressed as:
$$\boldsymbol{BA}
=\begin{pmatrix}
\boldsymbol{B}_1\boldsymbol{A}_1&
\boldsymbol{B}_1\boldsymbol{A}_2\\
\boldsymbol{B}_2\boldsymbol{A}_1&
\boldsymbol{B}_2\boldsymbol{A}_2
\end{pmatrix}$$
Proof. Let $\boldsymbol{A}$ be the following $m\times{n}$ block matrix:
$$\boldsymbol{A}=
\begin{pmatrix}
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert&\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert\\
\color{blue}\boldsymbol{a}_1&\color{blue}\boldsymbol{a}_2&
\color{blue}\cdots&\color{blue}\boldsymbol{a}_k&\color{red}\boldsymbol{a}_{k+1}&\color{red}\boldsymbol{a}_{k+2}
&\color{red}\cdots&\color{red}\boldsymbol{a}_{n}\\
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert&
\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert\\
\end{pmatrix}$$
Where:
$${\color{blue}\boldsymbol{A}_1}=
\begin{pmatrix}
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert\\
\color{blue}\boldsymbol{a}_1&\color{blue}\boldsymbol{a}_2&
\color{blue}\cdots&\color{blue}\boldsymbol{a}_k\\
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert
\\
\end{pmatrix},\;\;\;\;\;\;
{\color{red}\boldsymbol{A}_2}=
\begin{pmatrix}
\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert\\
\color{red}\boldsymbol{a}_{k+1}&\color{red}\boldsymbol{a}_{k+2}&\color{red}\cdots&\color{red}\boldsymbol{a}_{n}\\
\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert\\
\end{pmatrix}$$
Similarly, let $\boldsymbol{B}$ be the following $n\times{m}$ matrix:
$$\boldsymbol{B}=
\begin{pmatrix}
\color{purple}-&\color{purple}\boldsymbol{b}_1&\color{purple}-\\
\color{purple}-&\color{purple}\boldsymbol{b}_2&\color{purple}-\\
\color{purple}\vdots&\color{purple}\vdots&\color{purple}\vdots\\
\color{purple}-&\color{purple}\boldsymbol{b}_k&\color{purple}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+1}&\color{green}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+2}&\color{green}-\\
\color{green}\vdots&\color{green}\vdots&\color{green}\vdots\\
\color{green}-&\color{green}\boldsymbol{b}_n&\color{green}-\\
\end{pmatrix}$$
Where:
$${\color{purple}\boldsymbol{B}_1}=
\begin{pmatrix}
\color{purple}-&\color{purple}\boldsymbol{b}_1&\color{purple}-\\
\color{purple}-&\color{purple}\boldsymbol{b}_2&\color{purple}-\\
\color{purple}\vdots&\color{purple}\vdots&\color{purple}\vdots\\
\color{purple}-&\color{purple}\boldsymbol{b}_k&\color{purple}-
\end{pmatrix},\;\;\;\;\;\;
{\color{green}\boldsymbol{B}_2}=
\begin{pmatrix}
\color{green}-&\color{green}\boldsymbol{b}_{k+1}&\color{green}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+2}&\color{green}-\\
\color{green}\vdots&\color{green}\vdots&\color{green}\vdots\\
\color{green}-&\color{green}\boldsymbol{b}_n&\color{green}-
\end{pmatrix}$$
The product $\boldsymbol{BA}$ is:
$$\begin{align*}
\boldsymbol{BA}&=
\begin{pmatrix}
\color{purple}-&\color{purple}\boldsymbol{b}_1&\color{purple}-\\\color{purple}-&\color{purple}\boldsymbol{b}_2&\color{purple}-\\
\color{purple}\vdots&\color{purple}\vdots&\color{purple}\vdots\\\color{purple}-&\color{purple}\boldsymbol{b}_k&\color{purple}-\\
\color{green}-&\color{green}\boldsymbol{b}_{k+1}&\color{green}-\\\color{green}-&\color{green}\boldsymbol{b}_{k+2}&\color{green}-\\
\color{green}\vdots&\color{green}\vdots&\color{green}\vdots\\\color{green}-&\color{green}\boldsymbol{b}_n&\color{green}-\\
\end{pmatrix}\begin{pmatrix}
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert&\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert\\
\color{blue}\boldsymbol{a}_1&\color{blue}\boldsymbol{a}_2&\color{blue}\cdots&\color{blue}\boldsymbol{a}_k&\color{red}\boldsymbol{a}_{k+1}&\color{red}\boldsymbol{a}_{k+2}
&\color{red}\cdots&\color{red}\boldsymbol{a}_{n}\\\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert&
\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert\\
\end{pmatrix}
\\&=\begin{pmatrix}
{\color{purple}\boldsymbol{b}_1}\cdot\color{blue}\boldsymbol{a}_1&{\color{purple}\boldsymbol{b}_1}\cdot\color{blue}\boldsymbol{a}_2&
\cdots&{\color{purple}\boldsymbol{b}_1}\cdot\color{blue}\boldsymbol{a}_k&{\color{purple}\boldsymbol{b}_1}\cdot\color{red}\boldsymbol{a}_{k+1}&
\cdots&{\color{purple}\boldsymbol{b}_1}\cdot\color{red}\boldsymbol{a}_{n}\\
{\color{purple}\boldsymbol{b}_2}\cdot\color{blue}\boldsymbol{a}_1&{\color{purple}\boldsymbol{b}_2}\cdot\color{blue}\boldsymbol{a}_2&
\cdots&{\color{purple}\boldsymbol{b}_2}\cdot\color{blue}\boldsymbol{a}_k&{\color{purple}\boldsymbol{b}_2}\cdot\color{red}\boldsymbol{a}_{k+1}&
\cdots&{\color{purple}\boldsymbol{b}_2}\cdot\color{red}\boldsymbol{a}_{n}\\\vdots&\vdots&\smash\ddots&\vdots&\vdots&\smash\ddots&\vdots\\
{\color{purple}\boldsymbol{b}_k}\cdot\color{blue}\boldsymbol{a}_1&{\color{purple}\boldsymbol{b}_k}\cdot\color{blue}\boldsymbol{a}_2&
\cdots&{\color{purple}\boldsymbol{b}_k}\cdot\color{blue}\boldsymbol{a}_k&{\color{purple}\boldsymbol{b}_k}\cdot\color{red}\boldsymbol{a}_{k+1}&
\cdots&{\color{purple}\boldsymbol{b}_k}\cdot\color{red}\boldsymbol{a}_{n}\\
{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{blue}\boldsymbol{a}_1&{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{blue}\boldsymbol{a}_2&
\cdots&{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{blue}\boldsymbol{a}_k&{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{red}\boldsymbol{a}_{k+1}&\cdots&{\color{green}\boldsymbol{b}_{k+1}}\cdot\color{red}\boldsymbol{a}_{n}\\
{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{blue}\boldsymbol{a}_1&{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{blue}\boldsymbol{a}_2&
\cdots&{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{blue}\boldsymbol{a}_k&{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{red}\boldsymbol{a}_{k+1}&\cdots&{\color{green}\boldsymbol{b}_{k+2}}\cdot\color{red}\boldsymbol{a}_{n}\\
\vdots&\vdots&\smash\ddots&\vdots&\vdots&\smash\ddots&\vdots\\
{\color{green}\boldsymbol{b}_n}\cdot\color{blue}\boldsymbol{a}_1&{\color{green}\boldsymbol{b}_n}\cdot\color{blue}\boldsymbol{a}_2&
\cdots&{\color{green}\boldsymbol{b}_n}\cdot\color{blue}\boldsymbol{a}_k&
{\color{green}\boldsymbol{b}_n}\cdot\color{red}\boldsymbol{a}_{k+1}&
\cdots&{\color{green}\boldsymbol{b}_n}\cdot\color{red}\boldsymbol{a}_{n}
\end{pmatrix}\\
&=\begin{pmatrix}
\color{purple}\boldsymbol{B}_1\color{blue}\boldsymbol{A}_1&
\color{purple}\boldsymbol{B}_1\color{red}\boldsymbol{A}_2\\
\color{green}\boldsymbol{B}_2\color{blue}\boldsymbol{A}_1&
\color{green}\boldsymbol{B}_2\color{red}\boldsymbol{A}_2
\end{pmatrix}
\end{align*}$$
This completes the proof.
■
Theorem.
Product of block matrices (3)
Suppose we have two block matrices where each matrix is composed of four sub-matrices. The product of the two block matrices is:
$$\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{C}&\boldsymbol{D}
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{E}&\boldsymbol{F}\\
\boldsymbol{G}&\boldsymbol{H}
\end{pmatrix}=
\begin{pmatrix}
\boldsymbol{AE}+\boldsymbol{BG}&
\boldsymbol{AF}+\boldsymbol{BH}\\
\boldsymbol{CE}+\boldsymbol{DG}&
\boldsymbol{CF}+\boldsymbol{DH}\\
\end{pmatrix}$$
Note that the shape of the matrices must match for the matrix product to be valid. For instance, the number of columns of $\boldsymbol{A}$ must be equal to the number of rows of $\boldsymbol{E}$. This will be clear in the proof below.
Proof. Suppose we have the following two block matrices:
$$\begin{pmatrix}
\color{purple}\boldsymbol{A}&\color{green}\boldsymbol{B}\\
\color{orange}\boldsymbol{C}&\color{yellow}\boldsymbol{D}
\end{pmatrix}=
\begin{pmatrix}
\color{purple}-&\color{purple}\boldsymbol{a}_1&\color{purple}-&\color{green}-&\color{green}\boldsymbol{b}_1&\color{green}-\\
\color{purple}-&\color{purple}\boldsymbol{a}_2&\color{purple}-&\color{green}-&\color{green}\boldsymbol{b}_1&\color{green}-\\
\color{purple}\vdots&\color{purple}\vdots&\color{purple}\vdots&\color{green}\vdots&\color{green}\vdots&\color{green}\vdots\\
\color{purple}-&\color{purple}\boldsymbol{a}_m&\color{purple}-&\color{green}-&\color{green}\boldsymbol{b}_m&\color{green}-\\
\color{orange}-&\color{orange}\boldsymbol{c}_1&\color{orange}-&\color{yellow}-&\color{yellow}\boldsymbol{d}_1&\color{yellow}-\\
\color{orange}-&\color{orange}\boldsymbol{c}_2&\color{orange}-&\color{yellow}-&\color{yellow}\boldsymbol{d}_2&\color{yellow}-\\
\color{orange}\vdots&\color{orange}\vdots&\color{orange}\vdots&\color{yellow}\vdots&\color{yellow}\vdots&\color{yellow}\vdots\\
\color{orange}-&\color{orange}\boldsymbol{c}_p&\color{orange}-&\color{yellow}-&\color{yellow}\boldsymbol{d}_p&\color{yellow}-\\
\end{pmatrix},\;\;\;\;\;
\begin{pmatrix}
\color{blue}\boldsymbol{E}&\color{brown}\boldsymbol{F}\\
\color{red}\boldsymbol{G}&\boldsymbol{H}
\end{pmatrix}=
\begin{pmatrix}
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert&\color{brown}\vert&\color{brown}\vert&\color{brown}\cdots&\color{brown}\vert\\
\color{blue}\boldsymbol{e}_1&\color{blue}\boldsymbol{e}_2&
\color{blue}\cdots&\color{blue}\boldsymbol{e}_k&\color{brown}\boldsymbol{f}_{1}&\color{brown}\boldsymbol{f}_{2}
&\color{brown}\cdots&\color{brown}\boldsymbol{f}_{r}\\
\color{blue}\vert&\color{blue}\vert&\color{blue}\cdots&\color{blue}\vert&
\color{brown}\vert&\color{brown}\vert&\color{brown}\cdots&\color{brown}\vert\\
\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert&\vert&\vert&\cdots&\vert\\
\color{red}\boldsymbol{g}_1&\color{red}\boldsymbol{g}_2&
\color{red}\cdots&\color{red}\boldsymbol{g}_k&\boldsymbol{h}_{1}&\boldsymbol{h}_{2}
&\cdots&\boldsymbol{h}_{r}\\
\color{red}\vert&\color{red}\vert&\color{red}\cdots&\color{red}\vert&
\vert&\vert&\cdots&\vert\\
\end{pmatrix}$$
Now, let's multiply the two matrices:
$$\begin{equation}\label{eq:vkEm638LwWTxTnRMSdn}
\begin{pmatrix}
\color{purple}\boldsymbol{A}&\color{green}\boldsymbol{B}\\
\color{orange}\boldsymbol{C}&\color{yellow}\boldsymbol{D}
\end{pmatrix}
\begin{pmatrix}
\color{blue}\boldsymbol{E}&\color{brown}\boldsymbol{F}\\
\color{red}\boldsymbol{G}&\boldsymbol{H}
\end{pmatrix}=
\begin{pmatrix}
\boldsymbol{P}_1&\boldsymbol{P}_2
\end{pmatrix}
\end{equation}$$
Where $\boldsymbol{P}_1$ is:
$$\begin{align*}
\boldsymbol{P}_1&=
\begin{pmatrix}
{\color{purple}\boldsymbol{a}_1}\cdot{\color{blue}\boldsymbol{e}_1}+{\color{green}\boldsymbol{b}_1}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{purple}\boldsymbol{a}_1}\cdot{\color{blue}\boldsymbol{e}_2}+{\color{green}\boldsymbol{b}_1}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{purple}\boldsymbol{a}_1}\cdot{\color{blue}\boldsymbol{e}_k}+{\color{green}\boldsymbol{b}_1}\cdot{\color{red}\boldsymbol{g}_k}
\\{\color{purple}\boldsymbol{a}_2}\cdot{\color{blue}\boldsymbol{e}_1}+{\color{green}\boldsymbol{b}_2}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{purple}\boldsymbol{a}_2}\cdot{\color{blue}\boldsymbol{e}_2}+{\color{green}\boldsymbol{b}_2}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{purple}\boldsymbol{a}_2}\cdot{\color{blue}\boldsymbol{e}_k}+{\color{green}\boldsymbol{b}_2}\cdot{\color{red}\boldsymbol{g}_k}\\\vdots&\vdots&\smash\ddots&\vdots\\{\color{purple}\boldsymbol{a}_m}\cdot{\color{blue}\boldsymbol{e}_1}+{\color{green}\boldsymbol{b}_m}\cdot{\color{red}\boldsymbol{g}_1}&{\color{purple}\boldsymbol{a}_m}\cdot{\color{blue}\boldsymbol{e}_2}+{\color{green}\boldsymbol{b}_m}\cdot{\color{red}\boldsymbol{g}_2}&\cdots&{\color{purple}\boldsymbol{a}_m}\cdot{\color{blue}\boldsymbol{e}_k}+{\color{green}\boldsymbol{b}_m}\cdot{\color{red}\boldsymbol{g}_k}\\{\color{orange}\boldsymbol{c}_1}\cdot{\color{blue}\boldsymbol{e}_1}+{\color{yellow}\boldsymbol{d}_1}\cdot{\color{red}\boldsymbol{g}_1}&{\color{orange}\boldsymbol{c}_1}\cdot{\color{blue}\boldsymbol{e}_2}+{\color{yellow}\boldsymbol{d}_1}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{orange}\boldsymbol{c}_1}\cdot{\color{blue}\boldsymbol{e}_k}+{\color{yellow}\boldsymbol{d}_1}\cdot{\color{red}\boldsymbol{g}_k}
\\{\color{orange}\boldsymbol{c}_2}\cdot{\color{blue}\boldsymbol{e}_1}+{\color{yellow}\boldsymbol{d}_2}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{orange}\boldsymbol{c}_2}\cdot{\color{blue}\boldsymbol{e}_2}+{\color{yellow}\boldsymbol{d}_2}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{orange}\boldsymbol{c}_2}\cdot{\color{blue}\boldsymbol{e}_k}+{\color{yellow}\boldsymbol{d}_2}\cdot{\color{red}\boldsymbol{g}_k}\\
\vdots&\vdots&\smash\ddots&\vdots\\{\color{orange}\boldsymbol{c}_p}\cdot{\color{blue}\boldsymbol{e}_1}+{\color{yellow}\boldsymbol{d}_p}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{orange}\boldsymbol{c}_p}\cdot{\color{blue}\boldsymbol{e}_2}+{\color{yellow}\boldsymbol{d}_p}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{orange}\boldsymbol{c}_p}\cdot{\color{blue}\boldsymbol{e}_k}+{\color{yellow}\boldsymbol{d}_p}\cdot{\color{red}\boldsymbol{g}_k}\\
\end{pmatrix}\\&=\begin{pmatrix}{\color{purple}\boldsymbol{a}_1}\cdot{\color{blue}\boldsymbol{e}_1}&{\color{purple}\boldsymbol{a}_1}\cdot{\color{blue}\boldsymbol{e}_2}&\cdots&{\color{purple}\boldsymbol{a}_1}\cdot{\color{blue}\boldsymbol{e}_k}\\{\color{purple}\boldsymbol{a}_2}\cdot{\color{blue}\boldsymbol{e}_1}&
{\color{purple}\boldsymbol{a}_2}\cdot{\color{blue}\boldsymbol{e}_2}&\cdots&{\color{purple}\boldsymbol{a}_2}\cdot{\color{blue}\boldsymbol{e}_k}\\\vdots&\vdots&\smash\ddots&\vdots\\{\color{purple}\boldsymbol{a}_m}\cdot{\color{blue}\boldsymbol{e}_1}&
{\color{purple}\boldsymbol{a}_m}\cdot{\color{blue}\boldsymbol{e}_2}&\cdots&{\color{purple}\boldsymbol{a}_m}\cdot{\color{blue}\boldsymbol{e}_k}\\{\color{orange}\boldsymbol{c}_1}\cdot{\color{blue}\boldsymbol{e}_1}&
{\color{orange}\boldsymbol{c}_1}\cdot{\color{blue}\boldsymbol{e}_2}&\cdots&{\color{orange}\boldsymbol{c}_1}\cdot{\color{blue}\boldsymbol{e}_k}
\\{\color{orange}\boldsymbol{c}_2}\cdot{\color{blue}\boldsymbol{e}_1}&{\color{orange}\boldsymbol{c}_2}\cdot{\color{blue}\boldsymbol{e}_2}&
\cdots&{\color{orange}\boldsymbol{c}_2}\cdot{\color{blue}\boldsymbol{e}_k}\\\vdots&\vdots&\smash\ddots&\vdots\\{\color{orange}\boldsymbol{c}_p}\cdot{\color{blue}\boldsymbol{e}_1}&
{\color{orange}\boldsymbol{c}_p}\cdot{\color{blue}\boldsymbol{e}_2}&\cdots&{\color{orange}\boldsymbol{c}_p}\cdot{\color{blue}\boldsymbol{e}_k}\\
\end{pmatrix}+\begin{pmatrix}
{\color{green}\boldsymbol{b}_1}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{green}\boldsymbol{b}_1}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{green}\boldsymbol{b}_1}\cdot{\color{red}\boldsymbol{g}_k}
\\{\color{green}\boldsymbol{b}_2}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{green}\boldsymbol{b}_2}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{green}\boldsymbol{b}_2}\cdot{\color{red}\boldsymbol{g}_k}\\
\vdots&\vdots&\smash\ddots&\vdots\\{\color{green}\boldsymbol{b}_m}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{green}\boldsymbol{b}_m}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{green}\boldsymbol{b}_m}\cdot{\color{red}\boldsymbol{g}_k}\\
{\color{yellow}\boldsymbol{d}_1}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{yellow}\boldsymbol{d}_1}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{yellow}\boldsymbol{d}_1}\cdot{\color{red}\boldsymbol{g}_k}
\\{\color{yellow}\boldsymbol{d}_2}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{yellow}\boldsymbol{d}_2}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{yellow}\boldsymbol{d}_2}\cdot{\color{red}\boldsymbol{g}_k}\\
\vdots&\vdots&\smash\ddots&\vdots\\{\color{yellow}\boldsymbol{d}_p}\cdot{\color{red}\boldsymbol{g}_1}&
{\color{yellow}\boldsymbol{d}_p}\cdot{\color{red}\boldsymbol{g}_2}&
\cdots&{\color{yellow}\boldsymbol{d}_p}\cdot{\color{red}\boldsymbol{g}_k}\\
\end{pmatrix}\\
&=\begin{pmatrix}
{\color{purple}\boldsymbol{A}}{\color{blue}\boldsymbol{E}}\\
{\color{orange}\boldsymbol{C}}{\color{blue}\boldsymbol{E}}\\
\end{pmatrix}+
\begin{pmatrix}
{\color{green}\boldsymbol{B}}{\color{red}\boldsymbol{G}}\\
{\color{yellow}\boldsymbol{D}}{\color{red}\boldsymbol{G}}\\
\end{pmatrix}\\
&=\begin{pmatrix}
{\color{purple}\boldsymbol{A}}{\color{blue}\boldsymbol{E}}+{\color{green}\boldsymbol{B}}{\color{red}\boldsymbol{G}}\\
{\color{orange}\boldsymbol{C}}{\color{blue}\boldsymbol{E}}+{\color{yellow}\boldsymbol{D}}{\color{red}\boldsymbol{G}}\\
\end{pmatrix}
\end{align*}$$
While $\boldsymbol{P}_2$ is:
$$\begin{align*}
\boldsymbol{P}_2&=
\begin{pmatrix}
{\color{purple}\boldsymbol{a}_1}\cdot{\color{brown}\boldsymbol{f}_1}+{\color{green}\boldsymbol{b}_1}\cdot{\boldsymbol{h}_1}&
{\color{purple}\boldsymbol{a}_1}\cdot{\color{brown}\boldsymbol{f}_2}+{\color{green}\boldsymbol{b}_1}\cdot{\boldsymbol{h}_2}&
\cdots&{\color{purple}\boldsymbol{a}_1}\cdot{\color{brown}\boldsymbol{f}_r}+{\color{green}\boldsymbol{b}_1}\cdot{\boldsymbol{h}_r}
\\{\color{purple}\boldsymbol{a}_2}\cdot{\color{brown}\boldsymbol{f}_1}+{\color{green}\boldsymbol{b}_2}\cdot{\boldsymbol{h}_1}&
{\color{purple}\boldsymbol{a}_2}\cdot{\color{brown}\boldsymbol{f}_2}+{\color{green}\boldsymbol{b}_2}\cdot{\boldsymbol{h}_2}&
\cdots&{\color{purple}\boldsymbol{a}_2}\cdot{\color{brown}\boldsymbol{f}_r}+{\color{green}\boldsymbol{b}_2}\cdot{\boldsymbol{h}_r}\\
\vdots&\vdots&\smash\ddots&\vdots\\{\color{purple}\boldsymbol{a}_m}\cdot{\color{brown}\boldsymbol{f}_1}+{\color{green}\boldsymbol{b}_m}\cdot{\boldsymbol{h}_1}&{\color{purple}\boldsymbol{a}_m}\cdot{\color{brown}\boldsymbol{f}_2}+{\color{green}\boldsymbol{b}_m}\cdot{\boldsymbol{h}_2}&
\cdots&{\color{purple}\boldsymbol{a}_m}\cdot{\color{brown}\boldsymbol{f}_r}+{\color{green}\boldsymbol{b}_m}\cdot{\boldsymbol{h}_r}\\
{\color{orange}\boldsymbol{c}_1}\cdot{\color{brown}\boldsymbol{f}_1}+{\color{yellow}\boldsymbol{d}_1}\cdot{\boldsymbol{h}_1}&
{\color{orange}\boldsymbol{c}_1}\cdot{\color{brown}\boldsymbol{f}_2}+{\color{yellow}\boldsymbol{d}_1}\cdot{\boldsymbol{h}_2}&
\cdots&{\color{orange}\boldsymbol{c}_1}\cdot{\color{brown}\boldsymbol{f}_r}+{\color{yellow}\boldsymbol{d}_1}\cdot{\boldsymbol{h}_r}\\
{\color{orange}\boldsymbol{c}_2}\cdot{\color{brown}\boldsymbol{f}_1}+{\color{yellow}\boldsymbol{d}_2}\cdot{\boldsymbol{h}_1}&
{\color{orange}\boldsymbol{c}_2}\cdot{\color{brown}\boldsymbol{f}_2}+{\color{yellow}\boldsymbol{d}_2}\cdot{\boldsymbol{h}_2}&
\cdots&{\color{orange}\boldsymbol{c}_2}\cdot{\color{brown}\boldsymbol{f}_r}+{\color{yellow}\boldsymbol{d}_2}\cdot{\boldsymbol{h}_r}\\
\vdots&\vdots&\smash\ddots&\vdots\\{\color{orange}\boldsymbol{c}_p}\cdot{\color{brown}\boldsymbol{f}_1}+{\color{yellow}\boldsymbol{d}_p}\cdot{\boldsymbol{h}_1}&
{\color{orange}\boldsymbol{c}_p}\cdot{\color{brown}\boldsymbol{f}_2}+{\color{yellow}\boldsymbol{d}_p}\cdot{\boldsymbol{h}_2}&\cdots&{\color{orange}\boldsymbol{c}_p}\cdot{\color{brown}\boldsymbol{f}_r}+{\color{yellow}\boldsymbol{d}_p}\cdot{\boldsymbol{h}_r}
\end{pmatrix}\\&=\begin{pmatrix}{\color{purple}\boldsymbol{a}_1}\cdot{\color{brown}\boldsymbol{f}_1}&{\color{purple}\boldsymbol{a}_1}\cdot{\color{brown}\boldsymbol{f}_2}&\cdots&{\color{purple}\boldsymbol{a}_1}\cdot{\color{brown}\boldsymbol{f}_r}\\{\color{purple}\boldsymbol{a}_2}\cdot{\color{brown}\boldsymbol{f}_1}&
{\color{purple}\boldsymbol{a}_2}\cdot{\color{brown}\boldsymbol{f}_2}&\cdots&{\color{purple}\boldsymbol{a}_2}\cdot{\color{brown}\boldsymbol{f}_r}\\\vdots&\vdots&\smash\ddots&\vdots\\{\color{purple}\boldsymbol{a}_m}\cdot{\color{brown}\boldsymbol{f}_1}&
{\color{purple}\boldsymbol{a}_m}\cdot{\color{brown}\boldsymbol{f}_2}&\cdots&{\color{purple}\boldsymbol{a}_m}\cdot{\color{brown}\boldsymbol{f}_r}\\{\color{orange}\boldsymbol{c}_1}\cdot{\color{brown}\boldsymbol{f}_1}&{\color{orange}\boldsymbol{c}_1}\cdot{\color{brown}\boldsymbol{f}_2}&
\cdots&{\color{orange}\boldsymbol{c}_1}\cdot{\color{brown}\boldsymbol{f}_r}\\{\color{orange}\boldsymbol{c}_2}\cdot{\color{brown}\boldsymbol{f}_1}&
{\color{orange}\boldsymbol{c}_2}\cdot{\color{brown}\boldsymbol{f}_2}&\cdots&{\color{orange}\boldsymbol{c}_2}\cdot{\color{brown}\boldsymbol{f}_r}\\
\vdots&\vdots&\smash\ddots&\vdots\\{\color{orange}\boldsymbol{c}_p}\cdot{\color{brown}\boldsymbol{f}_1}&{\color{orange}\boldsymbol{c}_p}\cdot{\color{brown}\boldsymbol{f}_2}&
\cdots&{\color{orange}\boldsymbol{c}_p}\cdot{\color{brown}\boldsymbol{f}_r}\end{pmatrix}+\begin{pmatrix}
{\color{green}\boldsymbol{b}_1}\cdot{\boldsymbol{h}_1}&
{\color{green}\boldsymbol{b}_1}\cdot{\boldsymbol{h}_2}&
\cdots
&{\color{green}\boldsymbol{b}_1}\cdot{\boldsymbol{h}_r}
\\{\color{green}\boldsymbol{b}_2}\cdot{\boldsymbol{h}_1}&
{\color{green}\boldsymbol{b}_2}\cdot{\boldsymbol{h}_2}&
\cdots
&{\color{green}\boldsymbol{b}_2}\cdot{\boldsymbol{h}_r}\\
\vdots&\vdots&\smash\ddots&\vdots\\
{\color{green}\boldsymbol{b}_m}\cdot{\boldsymbol{h}_1}&
{\color{green}\boldsymbol{b}_m}\cdot{\boldsymbol{h}_2}&
\cdots
&{\color{green}\boldsymbol{b}_m}\cdot{\boldsymbol{h}_r}\\
{\color{yellow}\boldsymbol{d}_1}\cdot{\boldsymbol{h}_1}&
{\color{yellow}\boldsymbol{d}_1}\cdot{\boldsymbol{h}_2}&
\cdots
&{\color{yellow}\boldsymbol{d}_1}\cdot{\boldsymbol{h}_r}
\\
{\color{yellow}\boldsymbol{d}_2}\cdot{\boldsymbol{h}_1}&
{\color{yellow}\boldsymbol{d}_2}\cdot{\boldsymbol{h}_2}&
\cdots
&{\color{yellow}\boldsymbol{d}_2}\cdot{\boldsymbol{h}_r}\\
\vdots&\vdots&\smash\ddots&\vdots\\
{\color{yellow}\boldsymbol{d}_p}\cdot{\boldsymbol{h}_1}&
{\color{yellow}\boldsymbol{d}_p}\cdot{\boldsymbol{h}_2}&
\cdots&{\color{yellow}\boldsymbol{d}_p}\cdot{\boldsymbol{h}_r}
\end{pmatrix}\\
&=\begin{pmatrix}
{\color{purple}\boldsymbol{A}}{\color{brown}\boldsymbol{F}}\\{\color{orange}\boldsymbol{C}}{\color{brown}\boldsymbol{F}}
\end{pmatrix}+
\begin{pmatrix}
{\color{green}\boldsymbol{B}}\boldsymbol{H}\\{\color{yellow}\boldsymbol{D}}\boldsymbol{H}
\end{pmatrix}\\
&=
\begin{pmatrix}
{\color{purple}\boldsymbol{A}}{\color{brown}\boldsymbol{F}}+{\color{green}\boldsymbol{B}}\boldsymbol{H}\\
{\color{orange}\boldsymbol{C}}{\color{brown}\boldsymbol{F}}+{\color{yellow}\boldsymbol{D}}\boldsymbol{H}
\end{pmatrix}
\end{align*}$$
Note that the reason why we split up the resulting matrix into sub-matrices $\boldsymbol{P}_1$ and $\boldsymbol{P}_2$ is that it did not fit on an A4 page. Just think of the resulting matrix as $\boldsymbol{P}_1$ and $\boldsymbol{P}_2$ stacked horizontally. Substituting $\boldsymbol{P}_1$ and $\boldsymbol{P}_2$ into \eqref{eq:vkEm638LwWTxTnRMSdn} gives us:
$$\begin{align*}
\begin{pmatrix}
\color{purple}\boldsymbol{A}&\color{green}\boldsymbol{B}\\
\color{orange}\boldsymbol{C}&\color{yellow}\boldsymbol{D}
\end{pmatrix}
\begin{pmatrix}
\color{blue}\boldsymbol{E}&\color{brown}\boldsymbol{F}\\
\color{red}\boldsymbol{G}&\boldsymbol{H}
\end{pmatrix}&=
\begin{pmatrix}
\boldsymbol{P}_1&\boldsymbol{P}_2
\end{pmatrix}\\
&=\begin{pmatrix}
{\color{purple}\boldsymbol{A}}{\color{blue}\boldsymbol{E}}+{\color{green}\boldsymbol{B}}{\color{red}\boldsymbol{G}}
&{\color{purple}\boldsymbol{A}}{\color{brown}\boldsymbol{F}}+{\color{green}\boldsymbol{B}}\boldsymbol{H}\\
{\color{orange}\boldsymbol{C}}{\color{blue}\boldsymbol{E}}+{\color{yellow}\boldsymbol{D}}{\color{red}\boldsymbol{G}}&
{\color{orange}\boldsymbol{C}}{\color{brown}\boldsymbol{F}}+{\color{yellow}\boldsymbol{D}}\boldsymbol{H}
\end{pmatrix}
\end{align*}$$
This completes the proof.
■
Theorem.
Determinant of block matrices holding zero matrices and identity matrix
Consider the following block matrices:
$$\boldsymbol{B}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{I}
\end{pmatrix},\;\;\;\;\;\;\;
\boldsymbol{C}=
\begin{pmatrix}
\boldsymbol{I}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{A}
\end{pmatrix}$$
Where:
The determinant of $\boldsymbol{B}$ and $\boldsymbol{C}$ is:
$$\begin{align*}
\det(\boldsymbol{B})&=\boldsymbol{A}\\
\det(\boldsymbol{C})&=\boldsymbol{A}
\end{align*}$$
Proof. Suppose $\boldsymbol{A}$ is an $n\times{n}$ matrix. We will prove by induction that $\det(\boldsymbol{B})=\boldsymbol{A}$ - the proof for $\det(\boldsymbol{C})=\boldsymbol{A}$ is analogous. Consider the base case when $\boldsymbol{I}_1$ is an $1\times1$ identity matrix:
$$\begin{equation}\label{eq:pqpB7ZttMZ8MIyBSkEd}
\boldsymbol{B}_1=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{I}_1
\end{pmatrix}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{0}&1
\end{pmatrix}
\end{equation}$$
Here, the subscript in $\boldsymbol{B}_1$ represents the size of the identity matrix.
We obtain the determinant of $\boldsymbol{B}_1$ by performing cofactor expansionlink along the last row. The last row is composed of all zeros except the last entry, which is $1$. This means that the determinant of $\boldsymbol{B}_1$ is:
$$\det(\boldsymbol{B}_1)=
\pm\det(\boldsymbol{A})$$
Here, the sign of the determinant depends on the position of the $1$ in \eqref{eq:pqpB7ZttMZ8MIyBSkEd}. Recall the checkerboard pattern of signslink for determinants:
$$\begin{pmatrix}
+&-&+&-&\cdots\\-&+&-&+&\cdots
\\+&-&+&-&\cdots
\\-&+&-&+&\cdots
\\\vdots&\vdots&\vdots&\vdots&\smash\ddots\\
\end{pmatrix}$$
Observe how the sign corresponding to the position of $1$ is always $+$ because it is a diagonal entry. For instance, if $\boldsymbol{A}$ is an $2\times2$ matrix, then the position of $1$ is:
$$\begin{pmatrix}
*&*&+\\
*&*&-\\
+&-&\color{blue}+
\end{pmatrix}$$
If $\boldsymbol{A}$ is an $3\times3$ matrix, then the position of $1$ is:
$$\begin{pmatrix}
*&*&*&-\\
*&*&*&+\\
*&*&*&-\\
-&+&-&\color{blue}+
\end{pmatrix}$$
Therefore, the determinant of $\boldsymbol{B}_1$ is:
$$\det(\boldsymbol{B}_1)=
\det(\boldsymbol{A})$$
We have just managed to prove the theorem for the base case when the identity matrix is of size $1\times1$. We now assume that the theorem holds when the identity matrix is of size $(k-1)\times(k-1)$, that is:
$$\begin{equation}\label{eq:uEGEHog5T0Xt4gSIVsN}
\boldsymbol{B}_{k-1}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{I}_{k-1}
\end{pmatrix}
\;\;\;\;\;\;\;{\color{blue}\implies}\;\;\;\;\;\;\;
\det(\boldsymbol{B}_{k-1})=\det(\boldsymbol{A})
\end{equation}$$
Our goal is to show that the theorem still holds when the identity matrix is of size $k\times{k}$. The matrix $\boldsymbol{B}_k$ can be written as:
$$\boldsymbol{B}_k=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{I}_k
\end{pmatrix}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{I}_{k-1}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{0}&1\\
\end{pmatrix}$$
Since the $1$ lies on the diagonal of $\boldsymbol{B}_k$, the corresponding sign on the checkerboard is positive. Once again, we compute the determinant of $\boldsymbol{B}_k$ by cofactor expansion along the last row:
$$\begin{align*}
\det(\boldsymbol{B}_k)&=
\det\left[\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{0}&\boldsymbol{I}_{k-1}
\end{pmatrix}\right]\\
&=\det(\boldsymbol{B}_{k-1})\\
\end{align*}$$
We now use the inductive hypothesis \eqref{eq:uEGEHog5T0Xt4gSIVsN} to get:
$$\begin{align*}
\det(\boldsymbol{B}_k)
&=\det(\boldsymbol{B}_{k-1})\\
&=\det(\boldsymbol{A})\\
\end{align*}$$
By the principle of mathematical induction, we conclude that the theorem holds for an identity matrix of any size. This completes the proof.
■
Theorem.
Determinant of block matrices with a zero matrix (1)
Consider the following block matrix:
$$\boldsymbol{R}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}
\end{pmatrix}$$
Where $\boldsymbol{0}$ represents a zero matrix.
The determinant of $\boldsymbol{R}$ is:
$$\det(\boldsymbol{R})=
\det(\boldsymbol{A})\cdot\det(\boldsymbol{C})$$
Proof. Matrix $\boldsymbol{R}$ can be expressed:
$$\begin{equation}\label{eq:ktfwG6UlaqfhoY7uWso}
\begin{aligned}[b]
\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}&=
\begin{pmatrix}
\boldsymbol{I}_k\boldsymbol{A}+\boldsymbol{B}\boldsymbol{0}_{rk}&
\boldsymbol{I}_k\boldsymbol{0}_{kr}+\boldsymbol{B}\boldsymbol{I}_{r}\\
\boldsymbol{0}_{rk}\boldsymbol{A}+\boldsymbol{C}\boldsymbol{0}_{rk}
&\boldsymbol{0}_{rk}\boldsymbol{0}_{kr}+\boldsymbol{C}\boldsymbol{I}_r
\end{pmatrix}
\end{aligned}
\end{equation}$$
Where the subscript of the matrices represents their shape. For instance, $\boldsymbol{0}_{rk}$ is a zero matrix with $r$ rows and $k$ columns.
Now, using theoremlink, we can express \eqref{eq:ktfwG6UlaqfhoY7uWso} as a product of two block matrices:
$$\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}
=\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{B}\\
\boldsymbol{0}_{rk}&\boldsymbol{C}
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}$$
Similar to what we did in \eqref{eq:ktfwG6UlaqfhoY7uWso}, we express the left matrix on the right-hand side as:
$$\begin{align*}
\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}
&=
\begin{pmatrix}
\boldsymbol{I}_k\boldsymbol{I}_k+\boldsymbol{0}_{kr}\boldsymbol{0}_{rk}
&\boldsymbol{I}_k\boldsymbol{B}+\boldsymbol{0}_{kr}\boldsymbol{I}_{r}\\
\boldsymbol{0}_{rk}\boldsymbol{I}_k+\boldsymbol{C}\boldsymbol{0}_{rk}
&\boldsymbol{0}_{rk}\boldsymbol{B}+\boldsymbol{C}\boldsymbol{I}_{r}
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}
\end{align*}$$
Applying theoremlink once more gives:
$$\begin{align*}
\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}
&=
\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{C}
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{B}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}
\end{align*}$$
Now, let's take the determinant of both sides:
$$\begin{align*}
\det\left[\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}\right]
&=
\det\left[\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{C}
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{B}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}\right]\\
\end{align*}$$
By the multiplicative propertylink of determinant:
$$\begin{align*}
\det\left[\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}\right]
&=
\det\left[\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{C}
\end{pmatrix}\right]
\cdot\det\left[\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{B}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}\right]
\cdot\det\left[\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}_{kr}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}\right]\\
\end{align*}$$
Using theoremlink, we get:
$$\begin{align*}
\det\left[\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}\right]
&=
\det(\boldsymbol{C})
\cdot\det\left[\begin{pmatrix}
\boldsymbol{I}_k&\boldsymbol{B}\\
\boldsymbol{0}_{rk}&\boldsymbol{I}_r
\end{pmatrix}\right]
\cdot\det(\boldsymbol{A})\\
\end{align*}$$
Notice how the middle determinant is an upper triangular matrix. By theoremlink, this means that the determinant is equal to the product of its diagonals, which in this case are all ones. Therefore, the middle determinant is equal to one, thereby giving us the desired result:
$$\begin{align*}
\det\left[\begin{pmatrix}\boldsymbol{A}&\boldsymbol{B}\\
\boldsymbol{0}&\boldsymbol{C}\end{pmatrix}\right]
&=\det(\boldsymbol{C})
\cdot\det(\boldsymbol{A})\\
\det(\boldsymbol{R})&=\det(\boldsymbol{C})
\cdot\det(\boldsymbol{A})\\
\end{align*}$$
This completes the proof.
■
Theorem.
Determinant of block matrices with a zero matrix (2)
Consider the following block matrix:
$$\boldsymbol{R}=
\begin{pmatrix}
\boldsymbol{A}&\boldsymbol{0}\\
\boldsymbol{B}&\boldsymbol{C}
\end{pmatrix}$$
Where $\boldsymbol{0}$ is a zero matrix.
The determinant of $\boldsymbol{R}$ is:
$$\det(\boldsymbol{R})=
\det(\boldsymbol{A})\cdot
\det(\boldsymbol{C})$$
Proof. By theoremlink, the transpose of $\boldsymbol{R}$ is:
$$\boldsymbol{R}^T=
\begin{pmatrix}
\boldsymbol{A}^T&\boldsymbol{B}^T\\
\boldsymbol{0}^T&\boldsymbol{C}^T
\end{pmatrix}=
\begin{pmatrix}
\boldsymbol{A}^T&\boldsymbol{B}^T\\
\boldsymbol{0}&\boldsymbol{C}^T
\end{pmatrix}$$
Taking the determinant of both sides gives:
$$\begin{equation}\label{eq:s5iBxmyJjR1NjxgRVbD}
\det(\boldsymbol{R}^T)=
\det\left[\begin{pmatrix}
\boldsymbol{A}^T&\boldsymbol{B}^T\\
\boldsymbol{0}&\boldsymbol{C}^T
\end{pmatrix}\right]
\end{equation}$$
By theoremlink, the right-hand side is:
$$\det\left[\begin{pmatrix}
\boldsymbol{A}^T&\boldsymbol{B}^T\\
\boldsymbol{0}&\boldsymbol{C}^T
\end{pmatrix}\right]=
\det(\boldsymbol{A}^T)\cdot
\det(\boldsymbol{C}^T)$$
Now, by theoremlink, we know that the determinant of a matrix transpose is equal to the determinant of the matrix:
$$\begin{align*}
\det\left[\begin{pmatrix}
\boldsymbol{A}^T&\boldsymbol{B}^T\\
\boldsymbol{0}&\boldsymbol{C}^T
\end{pmatrix}\right]&=
\det(\boldsymbol{A})\cdot
\det(\boldsymbol{C})
\end{align*}$$
Similarly, we have that $\det(\boldsymbol{R}^T)=\det(\boldsymbol{R})$. Therefore, \eqref{eq:s5iBxmyJjR1NjxgRVbD} reduces to:
$$\det(\boldsymbol{R})=
\det(\boldsymbol{A})\cdot
\det(\boldsymbol{C})$$
This completes the proof.
■