search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

Pandas DataFrame | pipe method

schedule Aug 10, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Pandas DataFrame.pipe(~) method applies a specified function on the source DataFrame. This is not done in-place, meaning the source DataFrame is left intact and a new DataFrame is returned.

Parameters

1. func | function

The function to apply on the source DataFrame.

2. args | iterable | optional

The positional arguments to pass to func.

3. kwargs | mapping | optional

The keyword arguments to pass to func.

Return Value

A new DataFrame.

Examples

Basic usage

Consider the following DataFrame:

df = pd.DataFrame({"A":[3,4],"B":[5,6]})
df
A B
0 3 5
1 4 6

Suppose we wanted to add 10 to each entry:

def add_ten(x): # x is a DataFrame (df)
return x + 10

df.pipe(add_ten)
A B
0 13 15
1 14 16

Here, a new DataFrame is created and our original df is left intact.

Method chaining

What's nice about pipe(~) is that we can make a chain:

def add_ten(x):
return x + 10

df = pd.DataFrame({"A":[3,4],"B":[5,6]})
df.pipe(add_ten).pipe(add_ten)
A B
0 23 25
1 24 26

Specifying positional arguments

We can pass in positional arguments for our func:

def add(x, y, z):
return x + y + z

df = pd.DataFrame({"A":[3,4],"B":[5,6]})
df.pipe(add, 4, 6)
A B
0 13 15
1 14 16

Here, the arguments of add are as follows:

  • x is the source DataFrame (df)

  • y is assigned a value of 4

  • z is assigned a value of 6

Specifying keyword arguments

We can pass in keyword arguments for our func like so:

def add(x, y, k):
return x + y + k

df = pd.DataFrame({"A":[3,4],"B":[5,6]})
df.pipe(add, 4, k=6)
A B
0 13 15
1 14 16
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
2
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!