search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

Pandas DataFrame | sort_index method

schedule Aug 11, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Pandas' DataFrame.sort_index(~) method sorts the source DataFrame by either column or index labels.

Parameters

1. axislink | string or int | optional

Whether to sort by index or column labels:

Axis

Description

0 or "index"

DataFrame will be sorted by index labels.

1 or "columns"

DataFrame will be sorted by column labels.

By default, axis=0.

2. level | int or string or list<int> or list<string> | optional

The level to sort by. This is only relevant if your DataFrame has multi-index.

3. ascendinglink | boolean or list<boolean> | optional

Whether to sort in ascending or descending order. By default, ascending=True.

4. inplace | boolean | optional

  • If True, then the source DataFrame will be directly modified, and no new DataFrame will be created.

  • If False, then a new DataFrame will be returned, and the source DataFrame will be kept intact.

By default, inplace=False.

5. kind | string | optional

The sorting algorithm to use:

Kind

Speed

Worst case

Memory

Stable

quicksort

1 (fast)

O(n^2)

0

no

mergesort

2

O(nlogn)

~n/2

yes

heapsort

3 (slow)

O(nlogn)

0

no

By default, kind="quicksort".

NOTE

Sorting algorithms that are "stable" retain the relative ordering of duplicate values. For instance, suppose you are sorting the array [(2,3), (2,1), (4,5)] by the first element of each tuple. We have a duplicate value of 2 here, and stable sorting algorithms ensure that (2,3) will always come before (2,1) since that is how they are ordered originally. Unstable searches provide no guarantee that such ordering is retained.

6. na_positionlink | string | optional

Where to place NaN values:

Value

Description

"first"

Place NaNs at the beginning.

"last"

Place NaNs at the end.

By default, na_position="last".

7. sort_remaining | boolean | optional

If True, then we further sort by the other inner-levels in order. This is only relevant for multi-level indexes. By default, sort_remaining=True.

8. ignore_indexlink | boolean | optional

  • If True, then the index of the sorted DataFrame will be 0,1,...,n-1, where n is the number of rows of the DataFrame.

  • If False, then the index names will be kept as is.

By default, ignore_index=False.

Return Value

A DataFrame sorted by either column or index labels.

Examples

Consider the following DataFrame:

df = pd.DataFrame({"B":[1,2,3],"C":[4,5,6],"A":[7,8,9]}, index=[2,0,1])
df
   B  C  A
2  1  4  7
0  2  5  8
1  3  6  9

Sorting by index labels

To sort by index labels:

df.sort_index()
   B  C  A
0  2  5  8
1  3  6  9
2  1  4  7

Sorting by column labels

To sort by column labels, set axis=1, like so:

df.sort_index(axis=1)
   A  B  C
2  7  1  4
0  8  2  5
1  9  3  6

Here's our df again for your reference:

df
   B  C  A
2  1  4  7
0  2  5  8
1  3  6  9

Sorting in descending order

By default, the labels are sorted in ascending order. To sort in descending order instead, set ascending=False:

df.sort_index(ascending=False)
   B  C  A
2  1  4  7
1  3  6  9
0  2  5  8

Specifying na_position

Consider the following DataFrame:

df = pd.DataFrame({"A":[1,2,3]}, index=[2,1,np.NaN])
df
     A
2.0  1
1.0  2
NaN  3

By default, na_position="last", which means that rows (axis=0) where index is NaN are placed at the end:

df.sort_index()   # na_position="last"
     A
1.0  2
2.0  1
NaN  3

To place rows where index is NaN in the beginning instead:

df.sort_index(na_position="first"
     A
NaN  3
1.0  2
2.0  1

Specifying ignore_index

Consider the following DataFrame:

df = pd.DataFrame({"A":[1,2,3]}, index=["b","a","c"])
df
   A
b  1
a  2
c  3

By default, ignore_index=False, which means that the index names are kept:

df.sort_index()
   A
a  2
b  1
c  3

By setting ignore_index=True, the index names will be reset to the default integer indices:

df.sort_index(ignore_index=True)
   A
0  2
1  1
2  3
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!