search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

PySpark Column | cast method

schedule Aug 12, 2023
Last updated
local_offer
PySpark
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

PySpark Column's cast(~) method returns a new Column of the specified type.

Parameters

1. dataType | Type or string

The type to convert the column to.

Return Value

A new Column object.

Examples

Consider the following PySpark DataFrame:

df = spark.createDataFrame([("Alex", 20), ("Bob", 30), ("Cathy", 40)], ["name", "age"])
df.show()
+-----+---+
| name|age|
+-----+---+
| Alex| 20|
| Bob| 30|
|Cathy| 40|
+-----+---+

Converting PySpark column type to string

To convert the type of the DataFrame's age column from numeric to string:

df_new = df.withColumn("age", df["age"].cast("string"))
df_new.show()
+-----+---+
| name|age|
+-----+---+
| Alex| 20|
| Bob| 30|
|Cathy| 40|
+-----+---+

Equivalently, we can pass in the StringType() method like so:

from pyspark.sql.types import StringType
df_new = df.withColumn("age", df["age"].cast(StringType()))
df_new.show()
+-----+---+
| name|age|
+-----+---+
| Alex| 20|
| Bob| 30|
|Cathy| 40|
+-----+---+

I recommend passing in "string" instead of StringType() for simplicity.

To confirm that the column type has been converted to string, use the printSchema() method:

df_new.printSchema()
root
|-- name: string (nullable = true)
|-- age: string (nullable = true)

Converting PySpark column type to integer

To convert the column type to integer, use cast("int"):

df_new = df.withColumn("age", df["age"].cast("int"))
df_new.printSchema()
root
|-- name: string (nullable = true)
|-- age: integer (nullable = true)

Converting PySpark column type to float

To convert the column type to float, use cast("float"):

df_new = df.withColumn("age", df["age"].cast("float"))
df_new.printSchema()
root
|-- name: string (nullable = true)
|-- age: float (nullable = true)

Converting PySpark column type to date

To convert the PySpark column type to date, use the to_date(~) method instead of cast(~).

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...