near_me
Linear Algebra
keyboard_arrow_down 54 guides
1. Vectors
2. Matrices
3. Linear equations
System of linear equationsGaussian EliminationPivot positions and columnslockLinear dependence and independencelockElementary matriceslockLinear transformationlock
4. Matrix determinant
IntroductionDeterminant of elementary matricesInvertibility, multiplicative and transpose properties of determinantslockLaplace expansion theoremlockCramer's rule and finding inverse matrix using determinantslockGeometric interpretationlock
5. Vector space
SubspaceRelationship between pivots and linear dependenceSpanning Set of a vector spacelockBasis vectorslockConstructing a basis for a vector spacelockNull spacelockColumn spacelockRank and nullitylock
6. Special matrices
7. Eigenvalues and Eigenvectors
IntroductionBasic propertiesEigenspace and eigenbasislockSimilar matriceslockDiagonalizationlockAlgebraic and geometric multiplicitylock
8. Orthogonality
Orthogonal projectionsOrthonormal sets and basesOrthogonal complementlockOrthogonal matriceslockLeast squareslockGram-Schmidt processlock
9. Matrix decomposition
check_circle
Mark as learned thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Problem set - Introduction to Vectors (Linear Algebra)
schedule Dec 30, 2023
Last updated local_offer
Tags Linear Algebra
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
Compute the following:
$$2
\begin{pmatrix}
3\\1
\end{pmatrix}$$
Your answer
Submit answer
Show solution
Multiply each component by the scalar constant like so:
$$2\begin{pmatrix}
3\\1
\end{pmatrix}=
\begin{pmatrix}
2\times3\\2\times1
\end{pmatrix}=
\begin{pmatrix}
6\\2
\end{pmatrix}$$
Compute the following:
$$\begin{pmatrix}
2\\3
\end{pmatrix}+
\begin{pmatrix}
1\\-1
\end{pmatrix}$$
Your answer
Submit answer
Show solution
To add two vectors, add each pair of components like so:
$$\begin{pmatrix}
2\\3
\end{pmatrix}+
\begin{pmatrix}
1\\-1
\end{pmatrix}=
\begin{pmatrix}
3\\2
\end{pmatrix}$$
Compute the following:
$$\begin{pmatrix}
1\\4
\end{pmatrix}-
\begin{pmatrix}
1\\-1
\end{pmatrix}$$
Your answer
Submit answer
Show solution
To subtract two vectors, perform the subtraction for each pair of components like so:
$$\begin{pmatrix}
1\\4
\end{pmatrix}-
\begin{pmatrix}
1\\-1
\end{pmatrix}=
\begin{pmatrix}
0\\5
\end{pmatrix}$$
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!