Checking if a value exists in a DataFrame in Pandas
Start your free 7-days trial now!
Checking if a value exists in a DataFrame
Consider the following DataFrame:
import pandas as pd
A B0 1 41 2 52 3 6
To check if a value exists in the DataFrame, use the built-in in
operator against the DataFrame's values
property:
Here:
the
values
property returns a NumPy array holding all the values in the DataFrame.we are checking if the value
2
,5
,10
exists in the DataFrame.
Checking if a value exists in a certain column in the DataFrame
Consider the following DataFrame:
df
C D0 7 101 8 112 9 12
Solution
To check if a DataFrame column contains some values in Pandas:
Here, we’re checking if column C
contains either the value 8
or 11
.
Explanation
We first fetch column C
as a Series using df["C"]
, and then we use isin(~)
to obtain a boolean mask where True represents the presence of a value in the given list:
0 False1 True2 FalseName: C, dtype: bool
Here, we get True
for row 1
since it holds the value 8
.
Finally, we use the Series’ any()
method that returns True
if there is at least one True
in the Series: