search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
chevron_leftCreating DataFrames Cookbook
Combining multiple Series into a DataFrameCombining multiple Series to form a DataFrameConverting a Series to a DataFrameConverting list of lists into DataFrameConverting list to DataFrameConverting percent string into a numeric for read_csvConverting scikit-learn dataset to Pandas DataFrameConverting string data into a DataFrameCreating a DataFrame from a stringCreating a DataFrame using listsCreating a DataFrame with different type for each columnCreating a DataFrame with empty valuesCreating a DataFrame with missing valuesCreating a DataFrame with random numbersCreating a DataFrame with zerosCreating a MultiIndex DataFrameCreating a Pandas DataFrameCreating a single DataFrame from multiple filesCreating empty DataFrame with only column labelsFilling missing values when using read_csvImporting DatasetImporting tables from PostgreSQL as Pandas DataFramesInitialising a DataFrame using a constantInitialising a DataFrame using a dictionaryInitialising a DataFrame using a list of dictionariesInserting lists into a DataFrame cellKeeping leading zeroes when using read_csvParsing dates when using read_csvPreventing strings from getting parsed as NaN for read_csvReading data from GitHubReading file without headerReading large CSV files in chunksReading n random lines using read_csvReading space-delimited filesReading specific columns from fileReading tab-delimited filesReading the first few lines of a file to create DataFrameReading the last n lines of a fileReading URL using read_csvReading zipped csv file as a DataFrameRemoving Unnamed:0 columnResolving ParserError: Error tokenizing dataSaving DataFrame as zipped csvSkipping rows without skipping header for read_csvSpecifying data type for read_csvTreating missing values as empty strings rather than NaN for read_csv
check_circle
Mark as learned
thumb_up
4
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

Combining multiple Series into a DataFrame in Pandas

schedule Aug 12, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

To combine multiple Series into a single DataFrame, use the concat(~) method or the DataFrame(~) constructor.

Combining Series horizontally

Series represent columns

To combine two Series horizontally:

s1 = pd.Series([3,4], index=["a","b"])   # represents a column
s2 = pd.Series([5,6], index=["a","b"])
pd.concat([s1,s2], axis=1)
0 1
a 3 5
b 4 6

Note the following:

  • each Series represents a column

  • the parameter axis=1 for concat(~) is used to perform horizontal concatenation, as opposed to vertical.

Note that if your Series do not have exact matching index, the resulting DataFrame will have NaN values:

s1 = pd.Series([3,4], index=["a","b"])
s2 = pd.Series([5,6], index=["b","c"])
pd.concat([s1,s2], axis=1)
0 1
a 3.0 NaN
b 4.0 5.0
c NaN 6.0

Series represent rows

To combine two Series where each series represents a row:

s1 = pd.Series([3,4], index=["a","b"])   # represents a row
s2 = pd.Series([5,6], index=["a","b"])
pd.DataFrame([s1,s2])
a b
0 3 4
1 5 6

Note that if your Series do not have exact matching index, the resulting DataFrame will have NaN values:

s1 = pd.Series([3,4], index=["a","b"])
s2 = pd.Series([5,6], index=["b","c"])
pd.DataFrame([s1,s2])
   a    b    c
0  3.0  4.0  NaN
1  NaN  5.0  6.0

Combining Series vertically

To combine two Series vertically to form a DataFrame:

s1 = pd.Series([3,4], index=["a","b"])
s2 = pd.Series([5,6], index=["a","b"])
pd.DataFrame(pd.concat([s1,s2]))
0
a 3
b 4
a 5
b 6

Note that calling concat(~) on two series with the default axis=0 results in a Series, and so we need to convert this Series into a DataFrame via the DataFrame constructor.

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
4
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!