Pandas
keyboard_arrow_down 655 guides
chevron_leftCreating DataFrames Cookbook
Combining multiple Series into a DataFrameCombining multiple Series to form a DataFrameConverting a Series to a DataFrameConverting list of lists into DataFrameConverting list to DataFrameConverting percent string into a numeric for read_csvConverting scikit-learn dataset to Pandas DataFrameConverting string data into a DataFrameCreating a DataFrame from a stringCreating a DataFrame using listsCreating a DataFrame with different type for each columnCreating a DataFrame with empty valuesCreating a DataFrame with missing valuesCreating a DataFrame with random numbersCreating a DataFrame with zerosCreating a MultiIndex DataFrameCreating a Pandas DataFrameCreating a single DataFrame from multiple filesCreating empty DataFrame with only column labelsFilling missing values when using read_csvImporting DatasetImporting tables from PostgreSQL as Pandas DataFramesInitialising a DataFrame using a constantInitialising a DataFrame using a dictionaryInitialising a DataFrame using a list of dictionariesInserting lists into a DataFrame cellKeeping leading zeroes when using read_csvParsing dates when using read_csvPreventing strings from getting parsed as NaN for read_csvReading data from GitHubReading file without headerReading large CSV files in chunksReading n random lines using read_csvReading space-delimited filesReading specific columns from fileReading tab-delimited filesReading the first few lines of a file to create DataFrameReading the last n lines of a fileReading URL using read_csvReading zipped csv file as a DataFrameRemoving Unnamed:0 columnResolving ParserError: Error tokenizing dataSaving DataFrame as zipped csvSkipping rows without skipping header for read_csvSpecifying data type for read_csvTreating missing values as empty strings rather than NaN for read_csv
check_circle
Mark as learned thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Creating a DataFrame with random numbers in Pandas
schedule Aug 12, 2023
Last updated local_offer
Tags Python●Pandas
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
To create a DataFrame with random numbers in Pandas, use one of NumPy's functions that generate random numbers:
np.random.randint(~)
for random integersnp.random.default_rng().uniform(~)
for random floats
DataFrame with random integers
First, we generate a 2 by 3 NumPy array of random integers:
arr_random = np.random.randint(low=2, high=10, size=(2,3))arr_random
array([[8, 7, 2], [2, 3, 6]])
Here, the lower bound is 2
(inclusive) and the upper bound is 10
(exclusive).
We can then initialise a DataFrame using arr_random
like so:
pd.DataFrame(arr_random, columns=["A","B","C"], index=["a","b"])
A B Ca 4 4 2b 3 7 2
DataFrame with random floats
First, we generate a 2 by 3 NumPy array of random floats:
arr_random = np.random.default_rng().uniform(low=5,high=10,size=[2,3])arr_random
array([[7.04518804, 9.09625941, 5.29815702], [7.77653952, 9.22222284, 9.0035309 ]])
Note the following:
all floats are larger than or equal to 5.
all floats are less than 10.
To initialise a DataFrame using arr_random
:
pd.DataFrame(arr_random, columns=["A","B","C"])
A B C0 7.927711 5.560577 5.9183311 8.487705 9.111051 9.699249
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!