Pandas
keyboard_arrow_down 655 guides
chevron_leftData Manipulation Cookbook
Adding a prefix to column valuesAdding leading zeros to strings of a columnAdding new column using listsAdding padding to a column of stringsBit-wise ORChanging column type to stringConditionally updating values of a DataFrameConverting all object-typed columns to categorical typeConverting column type to dateConverting column type to floatConverting column type to integerConverting K and M to numerical formConverting string categories or labels to numeric valuesEncoding categorical variablesExpanding lists vertically in a DataFrameExpanding strings vertically in a DataFrameExtracting numbers from columnFilling missing value in Index of DataFrameFiltering column values using boolean masksLogical AND operationMaking DataFrame string column lowercaseMapping True and False to 1 and 0 respectivelyMapping values of a DataFrame using a dictionaryModifying a single value in a DataFrameRemoving characters from columnsRemoving comma from column valuesRemoving first n characters from column valuesRemoving last n characters from column valuesRemoving leading substringRemoving trailing substringReplacing infinities with another value in DataFrameReplacing values in a DataFrameRounding valuesSorting categorical columnsUsing previous row to create new columns
check_circle
Mark as learned thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Mapping values of a DataFrame using a dictionary in Pandas
schedule Aug 10, 2023
Last updated local_offer
Tags Python●Pandas
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
To map values of a DataFrame using a dictionary, use the DataFrame's replace(~)
method.
Example
Consider the following DataFrame:
df = pd.DataFrame({"A":[1,2], "B":[3,4]})df
A B0 1 31 2 4
To replace all values of 1
and 3
with 5
and 6
, respectively:
df.replace({1:5, 3:6})
A B0 5 61 2 4
Here, a new DataFrame is returned, and so the original df
is kept intact. To directly modify df
, set inplace=True
.
To replace values in certain columns only:
df.replace({"A":1}, 5)
A B0 5 31 2 4
Here, we're only replacing the value 1
with 5
in column A
.
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!