search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

Pandas DataFrame | all method

schedule Aug 10, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Pandas DataFrame.all(~) method checks each row or column, and returns True for that row/column if all its values evaluate to True.

Parameters

1. axislink | int or string | optional

Whether to check each row, column or the entire DataFrame:

Axis

Description

0 or "index"

Checks each column.

1 or "columns"

Checks each row.

None

Returns True if all values in the source DataFrame evaluates to True.

By default, axis=0.

2. bool_only | None or boolean | optional

Whether or not to only consider rows or columns that just have boolean entries in them. By default, bool_only=None.

3. skipna | boolean | optional

  • If True, then NaNs are ignored. If all values in the row/column are NaN, then the method returns a True.

  • If False, then NaNs are treated as True.

By default, skipna=True.

4. level | int or string | optional

The level to target. This is only relevant if the source DataFrame is a multi-index. By default, level=None.

Return value

If axis=None, then a single boolean is returned. Otherwise, a DataFrame of booleans is returned.

Examples

Consider the following DataFrame:

df = pd.DataFrame({"A":[3,0],"B":[True,1]})
df
   A  B
0  3  True
1  0  1

Checking each column

For each column, to check whether or not all its values evaluate to True:

df.all()   # axis=0
A False
B True
dtype: bool

Here, note the following:

  • we get False for column A because the value 0 is internally equivalent to False.

  • similarly, True is returned for column B because the value 1 represents a True boolean.

Checking each row

For each row, to check whether or not all its values evaluate to True:

df.all(axis=1)
0 True
1 False
dtype: bool

Checking entire DataFrame

To check whether or not all the values in the DataFrame evaluates to True:

df.all(axis=None)
False
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!