Pandas DataFrame | count method
Start your free 7-days trial now!
Pandas DataFrame.count(~)
method counts the number of non-missing values for each row or column of the DataFrame.
Parameters
1. axis
link | string
or int
| optional
Whether to check each column or row:
Axis | Description |
---|---|
| Count each column. |
| Count each row. |
By default, axis=0
.
2. level
| int
or string
| optional
The level to check. This is only relevant if the source DataFrame has MultiIndex
.
3. numeric_only
link | boolean
| optional
If
True
, then the method will perform the count on columns/rows of typenumber
orboolean
.If
False
, then all columns/rows will be counted.
By default, numeric_only=False
.
Return Value
A Series
of int
that indicates the number of missing values for each row/column of the source DataFrame.
Examples
Consider the following DataFrame:
df
A B0 NaN 31 NaN 4
Counting non-missing values column-wise
To count the number of non-missing values for each column:
df.count() # axis=0
A 0B 2dtype: int64
Here, we have 0
non-NaN
values in column A
, and 2 non-NaN
values in B
.
Counting non-missing values row-wise
To count the number of non-missing values for each row, set axis=1
:
df.count(axis=1)
0 11 1dtype: int64
Here, we have 1 non-missing value in both row 0
and row 1
.
Counting only numeric and boolean columns/rows
Consider the following DataFrame:
df
A B0 a 31 b 4
To count only numeric and boolean columns, set numeric_only=True
:
df.count(numeric_only=True)
B 2dtype: int64
Notice how column A
is ignored since it is a non-numeric type.