search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

Pandas DataFrame | cumprod method

schedule Aug 11, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Pandas DataFrame.cumprod(~) method computes the cumulative product along the row or column of the source DataFrame.

Parameters

1. axislink | int or string | optional

Whether to compute the cumulative product along the row or the column:

Axis

Description

0 or "index"

Compute the cumulative product of each column.

1 or "columns"

Compute the cumulative product of each row.

By default, axis=0.

2. skipnalink | boolean | optional

Whether or not to ignore NaN. By default, skipna=True.

Return Value

A DataFrame holding the cumulative product of the row or column values.

Examples

Consider the following DataFrame:

df = pd.DataFrame({"A":[3,4],"B":[5,6]})
df
   A  B
0  3  5
1  4  6

Cumulative product of each column

To compute the cumulative product for each column:

df.cumprod()
   A   B
0  3   5
1  12  30

Cumulative product of each row

To compute the cumulative product for each row:

df.cumprod(axis=1)
   A  B
0  3  15
1  4  24

Dealing with missing values

Consider the following DataFrame with a missing value:

df = pd.DataFrame({"A":[3,pd.np.nan,5]})
df
A
0 3.0
1 NaN
2 5.0

By default, skipna=True, which means that missing values are ignored:

df.cumprod()   # skipna=True
A
0 3.0
1 NaN
2 15.0

To take into account missing values:

df.cumprod(skipna=False)
A
0 3.0
1 NaN
2 NaN

Here, notice how we end up with a NaN after the first NaN.

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!