Pandas
keyboard_arrow_down 655 guides
chevron_leftMiscellaneous Cookbook
Adjusting number of rows that are printedAppending DataFrame to an existing CSV fileChecking differences between two indexesChecking if a DataFrame is emptyChecking if a variable is a DataFrameChecking if index is sortedChecking if value exists in IndexChecking memory usage of DataFrameChecking whether a Pandas object is a view or a copyConcatenating a list of DataFramesConverting a DataFrame to a listConverting a DataFrame to a SeriesConverting DataFrame to a list of dictionariesConverting DataFrame to list of tuplesCounting the number of negative valuesCreating a DataFrame using cartesian product of two DataFramesDisplaying DataFrames side by sideDisplaying full non-truncated DataFrame valuesDrawing frequency histogram of DataFrame columnExporting Pandas DataFrame to PostgreSQL tableHighlighting a particular cell of a DataFrameHighlighting DataFrame cell based on valueHow to solve "ValueError: If using all scalar values, you must pass an index"Importing BigQuery table as Pandas DataFramePlotting two columns of DataFramePrinting DataFrame on a single linePrinting DataFrame without indexPrinting DataFrames in tabular formatRandomly splitting DataFrame into multiple DataFrames of equal sizeReducing DataFrame memory sizeSaving a DataFrame as a CSV fileSaving DataFrame as Excel fileSaving DataFrame as feather fileSetting all values to zeroShowing all dtypes without truncationSplitting DataFrame into multiple DataFrames based on valueSplitting DataFrame into smaller equal-sized DataFramesWriting DataFrame to SQLite
check_circle
Mark as learned thumb_up
1
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Concatenating a list of DataFrames in Pandas
schedule Aug 12, 2023
Last updated local_offer
Tags Python●Pandas
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
To concatenate a list of DataFrames in Pandas either vertically or horizontally, use the concat(~)
method.
Vertically concatenating DataFrames
Consider the following DataFrames:
df1 = pd.DataFrame({"A":[2,3],"B":[4,5]})df2 = pd.DataFrame({"A":[6,7],"B":[8,9]})
A B | A B0 2 4 | 0 6 81 3 5 | 1 7 9
To vertically concatenate the DataFrames:
pd.concat([df1, df2])
A B0 2 41 3 50 6 81 7 9
If the column labels do not align, then some entries would be NaN
:
df1 = pd.DataFrame({"A":[2,3],"B":[4,5]})df2 = pd.DataFrame({"A":[6,7],"C":[8,9]})pd.concat([df1, df2])
A B C0 2 4.0 NaN1 3 5.0 NaN0 6 NaN 8.01 7 NaN 9.0
Horizontally concatenating DataFrames
Consider the following DataFrames:
df1 = pd.DataFrame({"A":[2,3],"B":[4,5]})df2 = pd.DataFrame({"A":[6,7],"B":[8,9]})
A B | A B0 2 4 | 0 6 81 3 5 | 1 7 9
To horizontally concatenate the DataFrames:
pd.concat([df1, df2], axis=1)
A B A C0 2 4 6 81 3 5 7 9
Here, axis=1
is needed to perform concatenation horizontally, as opposed to vertically.
In the case when index (row labels) does not align, we end up with NaN
for some entries:
df1 = pd.DataFrame({"A":[2,3],"B":[4,5]}, index=["a","b"])df2 = pd.DataFrame({"A":[6,7],"B":[8,9]}, index=["a","c"])pd.concat([df1, df2], axis=1)
A B A Ba 2.0 4.0 6.0 8.0b 3.0 5.0 NaN NaNc NaN NaN 7.0 9.0
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
1
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!