Pandas DataFrame | rename method
Start your free 7-days trial now!
Pandas' DataFrame.rename(~)
method renames the columns and indexes of the DataFrame.
Parameters
1. columns
link | dict
A dictionary whose keys are the column names you want to modify, and values are the new column names.
2. index
link | dict
A dictionary whose keys are the index names you want to modify, and values are the new index names.
3. inplace
link | boolean
| optional
If
True
, then modify and return the source DataFrame without creating a new one.If
False
, then a new DataFrame is returned.
By default, inplace=False
.
Return Value
A DataFrame
with its columns or indexes renamed.
Examples
Renaming columns
Consider the following DataFrame:
df
A B0 1 31 2 4
Renaming a single column
To rename column "A"
to "C"
:
df.rename(columns={"A":"C"})
C B0 1 31 2 4
Renaming multiple columns
To rename columns "A"
and "B"
to "C"
and "D"
, respectively:
df.rename(columns={"A":"C", "B":"D"})
C Da 1 3b 2 4
Renaming indices
Consider the same DataFrame, df
, as before:
df
A B0 1 31 2 4
Renaming a single index
To rename the index 0
to "a"
:
df.rename(index={0:"a"})
A Ba 1 31 2 4
Renaming multiple indices
To rename multiple indices:
df.rename(index={0:"a", 1:"b"})
A Ba 1 3b 2 4
Here, we've renamed column 0
to "a"
, and column 1
to "b"
.
Perform renaming in-place
By default, inplace=False
, which means that the method returns an entirely new DataFrame without modifying the source DataFrame.
To directly modify the source DataFrame instead, set inplace=True
like so:
C B0 1 31 2 4
Here, we've modified our df
directly.