search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

Replacing all NaN values with zeros in a Pandas DataFrame

schedule Aug 11, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

To replace all NaN values with zeros in a Pandas DataFrame, use the fillna(~) method.

Example - filling all columns of a DataFrame

Consider the following DataFrame with some NaN values:

df = pd.DataFrame({"A":[np.nan,3],"B":[4,np.nan]})
df
   A    B
0  NaN  4.0
1  3.0  NaN

To convert all NaN to zeros:

df.fillna(0)
   A    B
0  0.0  4.0
1  3.0  0.0

Example - filling some columns of a DataFrame

Consider the same DataFrame as above:

df
   A    B
0  NaN  4.0
1  3.0  NaN

To convert NaN in column A to zeros:

df["A"] = df["A"].fillna(0)
df
A B
0 0.0 4.0
1 3.0 NaN
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!