Pandas
keyboard_arrow_down 655 guides
chevron_leftHandling Missing Values
Adding missing dates in Datetime IndexChecking if a certain value in a DataFrame is NaNChecking if a DataFrame contains any missing valuesConverting a column with missing values to integer typeCounting non-missing valuesCounting number of rows with missing valuesCounting the number of NaN in each row of a DataFrameCounting number of NaN values in each column of a DataFrameCounting the total number of NaN values of a DataFrameFilling missing values using another columnFilling missing values with the mean of the columnFinding columns with missing valuesGetting integer indexes of rows with NaNGetting rows with missing valuesGetting rows with missing values in certain columnsGetting index of rows with missing values (NaNs)Getting index of rows without missing valuesMapping NaN values to 0 and non-NaN values to 1Mapping NaN values to False and non-NaN values to TrueRemoving columns where some rows contain missing valuesRemoving rows from a DataFrame with missing valuesReplacing all NaN values of a DataFrameReplacing all NaN values with zeros in a DataFrameReplacing missing valuesReplacing missing values with constantsReplacing NaN with blank stringReplacing NaNs for certain columnsReplacing NaNs with preceding valuesReplacing values with NaNsUsing interpolation to fill missing values
check_circle
Mark as learned thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Finding columns with missing values (NaNs) in Pandas DataFrame
schedule Aug 12, 2023
Last updated local_offer
Tags Python●Pandas
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
Finding columns with at least one missing value
Consider the following DataFrame:
df = pd.DataFrame({"A":[3,None],"B":[4,5]})df
A B0 3.0 41 NaN 5
To find columns with at least one NaN
:
df.isna().any()
A TrueB Falsedtype: bool
Explanation
Here, isna()
returns a DataFrame of booleans where True
corresponds to an entry with NaN
value:
df.isna()
A B0 False False1 True False
We then call any()
, which checks each column to see if there exists a non-zero value. If so, then True
is returned for that column:
df.isna().any()
A TrueB Falsedtype: bool
Remember, booleans True
and False
are synonymous to integers 1
and 0
respectively.
Finding columns with only missing values
Consider the following DataFrame:
df = pd.DataFrame({"A":[pd.np.nan,pd.np.nan],"B":[4,5]})df
A B0 NaN 41 NaN 5
To find columns that contain only NaN
:
df.isna().all()
A TrueB Falsedtype: bool
Explanation
Once again, we use isna()
to fetch a DataFrame of booleans where True
corresponds to entries with NaN
:
df.isna().all()
A B0 True False1 True False
Now, instead of any()
, we use all()
, which checks each column and returns True
for that column if all its values are non-zero:
df.isna().all()
A TrueB Falsedtype: bool
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!