Pandas 
 keyboard_arrow_down 655 guides
 chevron_leftHandling Missing Values
Adding missing dates in Datetime IndexChecking if a certain value in a DataFrame is NaNChecking if a DataFrame contains any missing valuesConverting a column with missing values to integer typeCounting non-missing valuesCounting number of rows with missing valuesCounting the number of NaN in each row of a DataFrameCounting number of NaN values in each column of a DataFrameCounting the total number of NaN values of a DataFrameFilling missing values using another columnFilling missing values with the mean of the columnFinding columns with missing valuesGetting integer indexes of rows with NaNGetting rows with missing valuesGetting rows with missing values in certain columnsGetting index of rows with missing values (NaNs)Getting index of rows without missing valuesMapping NaN values to 0 and non-NaN values to 1Mapping NaN values to False and non-NaN values to TrueRemoving columns where some rows contain missing valuesRemoving rows from a DataFrame with missing valuesReplacing all NaN values of a DataFrameReplacing all NaN values with zeros in a DataFrameReplacing missing valuesReplacing missing values with constantsReplacing NaN with blank stringReplacing NaNs for certain columnsReplacing NaNs with preceding valuesReplacing values with NaNsUsing interpolation to fill missing values
  check_circle
 Mark as learned thumb_up
 0
 thumb_down
 1
 chat_bubble_outline
 0
 Comment  auto_stories Bi-column layout 
 settings
 Counting non-missing values in Pandas
 schedule Aug 11, 2023 
 Last updated  local_offer 
 Tags Python●Pandas
  tocTable of Contents
 expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
   Start your free 7-days trial now!
To count non-missing values in rows or columns of a Pandas DataFrame use the count(~) method.
Examples
Consider the following DataFrame:
        
        
            
                
                
                    df
                
            
               A    B0  NaN  31  NaN  4
        
    Column-wise
To count the number of non-missing values for each column:
        
        
            
                
                
                    df.count()   # axis=0
                
            
            A  0B  2dtype: int64
        
    Here, we have 0 non-NaN values in column A, and 2 non-NaN values in B.
Row-wise
To count the number of non-missing values for each row, set axis=1:
        
        
            
                
                
                    
                
            
            0    11    1dtype: int64
        
    Here, we have 1 non-missing value in both row 0 and row 1.
Numeric and boolean columns/rows only
Consider the following DataFrame:
        
        
            
                
                
                    df
                
            
               A  B0  a  31  b  4
        
    To count only numeric and boolean columns, set numeric_only=True:
        
        
            
                
                
                    df.count(numeric_only=True)
                
            
            B    2dtype: int64
        
    Notice how column A is ignored since it is a non-numeric type.
Published by Arthur Yanagisawa
 Edited by 0 others
 Did you find this page useful?
 thumb_up
 thumb_down
 Comment
 Citation
  Ask a question or leave a feedback...
 thumb_up
 0
 thumb_down
 1
 chat_bubble_outline
 0
 settings
 Enjoy our search
 Hit / to insta-search docs and recipes!
 