Pandas
keyboard_arrow_down 655 guides
chevron_leftHandling Missing Values
Adding missing dates in Datetime IndexChecking if a certain value in a DataFrame is NaNChecking if a DataFrame contains any missing valuesConverting a column with missing values to integer typeCounting non-missing valuesCounting number of rows with missing valuesCounting the number of NaN in each row of a DataFrameCounting number of NaN values in each column of a DataFrameCounting the total number of NaN values of a DataFrameFilling missing values using another columnFilling missing values with the mean of the columnFinding columns with missing valuesGetting integer indexes of rows with NaNGetting rows with missing valuesGetting rows with missing values in certain columnsGetting index of rows with missing values (NaNs)Getting index of rows without missing valuesMapping NaN values to 0 and non-NaN values to 1Mapping NaN values to False and non-NaN values to TrueRemoving columns where some rows contain missing valuesRemoving rows from a DataFrame with missing valuesReplacing all NaN values of a DataFrameReplacing all NaN values with zeros in a DataFrameReplacing missing valuesReplacing missing values with constantsReplacing NaN with blank stringReplacing NaNs for certain columnsReplacing NaNs with preceding valuesReplacing values with NaNsUsing interpolation to fill missing values
check_circle
Mark as learned thumb_up
0
thumb_down
1
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Counting non-missing values in Pandas
schedule Aug 11, 2023
Last updated local_offer
Tags Python●Pandas
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
To count non-missing values in rows or columns of a Pandas DataFrame use the count(~)
method.
Examples
Consider the following DataFrame:
df
A B0 NaN 31 NaN 4
Column-wise
To count the number of non-missing values for each column:
df.count() # axis=0
A 0B 2dtype: int64
Here, we have 0
non-NaN
values in column A
, and 2 non-NaN
values in B
.
Row-wise
To count the number of non-missing values for each row, set axis=1
:
0 11 1dtype: int64
Here, we have 1 non-missing value in both row 0
and row 1
.
Numeric and boolean columns/rows only
Consider the following DataFrame:
df
A B0 a 31 b 4
To count only numeric and boolean columns, set numeric_only=True
:
df.count(numeric_only=True)
B 2dtype: int64
Notice how column A
is ignored since it is a non-numeric type.
Published by Arthur Yanagisawa
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
1
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!