search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

Counting number of missing values (NaN) in each column of a Pandas DataFrame

schedule Aug 12, 2023
Last updated
local_offer
PythonPandas
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Example

Consider the following DataFrame with some NaN values:

df = pd.DataFrame({"A":[np.nan,3,np.nan], "B":[4,np.nan,5], "C":[6,7,8]})
df
   A    B    C
0  NaN  4.0  6
1  3.0  NaN  7
2  NaN  5.0  8

In each column

To count the number of NaNs of each column of df:

df.isna().sum()
A 2
B 1
C 0
dtype: int64

Explanation

Here, the df.isna() returns a DataFrame of booleans where True indicates entries that are NaN:

df.isna()
   A      B      C
0  True   False  False
1  False  True   False
2  True   False  False

Internally, True is represented by 1 while a False is represented by 0. Therefore, summing up the booleans for each column is equivalent to counting the number of True (NaN values) per column:

df.isna().sum()
A 2
B 1
C 0
dtype: int64

In a particular column

To count the number of NaNs in just column A:

df["A"].isna().sum()
2

In multiple columns

To count the number of NaNs in columns A and B:

df[["A","B"]].isna().sum()
A 1
B 1
dtype: int64
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!