Pandas DataFrame | gt method
Start your free 7-days trial now!
Pandas DataFrame.gt(~)
method returns a DataFrame of booleans where True
indicates an entry that is strictly greater than the specified value.
Parameters
1. other
link | scalar
or sequence
or Series
or DataFrame
The value(s) to compare with.
2. axis
link | int
or string
| optional
Whether to perform the comparison along the columns or the rows:
Axis | Description |
---|---|
| Compare each column. |
| Compare each row. |
By default, axis="columns"
.
3. level
| int
or string
| optional
The levels to perform comparison on. This is only relevant if your source DataFrame is a multi-index.
Return Value
A DataFrame of booleans.
Examples
Consider the following DataFrame:
df = pd.DataFrame({"A":[3,4],"B":[5,6]})df
A B0 3 51 4 6
Passing in a acalar
To check for values strictly greater than 5
in the DataFrame:
df.gt(5)
A B0 False False1 False True
Comparing rows
By default, axis=1
, which means that passing in a sequence will result in a comparison with each row:
df.gt([4,5]) # axis=1
A B0 False False1 False True
Here, we are comparing each row of the source DataFrame with [4,5]
. This means that we are performing the following pair-wise comparisons:
(row one) [3,5] > [4,5] = [False, False](row two) [4,6] > [4,5] = [False, True]
We show the same df
here for your reference:
df
A B0 3 51 4 6
Comparing columns
By setting axis=0
, we can compare each column with the specified sequence:
df.gt([4,5], axis=0)
A B0 False True1 False True
Here, we're performing the following pair-wise comparisons:
(column A) [3,4] > [4,5] = [False, False](column B) [5,6] > [4,5] = [True, True]
Case with missing values
Any comparison with missing values will result in False
for that entry.
Consider the following DataFrame with a missing value:
df = pd.DataFrame({"A":[3,pd.np.nan],"B":[5,6]})df
A B0 3.0 51 NaN 6
Performing a comparison yields:
df.gt(3)
A B0 False True1 False True
Notice how NaN > 3
returned False
.