Pandas DataFrame | sub method
Start your free 7-days trial now!
Pandas DataFrame.sub(~)
method subtracts a scalar, sequence, Series or DataFrame from the values in the source DataFrame, that is:
DataFrame - other
Unless you use the parameters axis
, level
and fill_value
, sub(~)
is equivalent to performing subtraction using the -
operator.
Parameters
1. other
link | scalar
or sequence
or Series
or DataFrame
The resulting DataFrame will be other
subtracted from the source DataFrame.
2. axis
link | int
or string
| optional
Whether to broadcast other
for each column or row of the source DataFrame:
Axis | Description |
---|---|
|
|
|
|
This is only relevant if the dimensions of the source DataFrame and other
do not align. By default, axis="columns"
.
3. level
| int
or string
| optional
The name or the integer index of the level to consider. This is relevant if your DataFrame is Multi-index.
4. fill_value
link | float
or None
| optional
The value to replace NaN
before the computation. If the subtraction involves two NaN
, then the result would still be NaN
. By default, fill_value=None
.
Return Value
A new DataFrame
resulting from the subtraction of other
from the source DataFrame.
Examples
Basic usage
Consider the following DataFrames:
df = pd.DataFrame({"A":[2,3], "B":[4,5]})df_other = pd.DataFrame({"A":[9,8], "B":[7,6]})
A B | A B0 2 4 | 0 9 71 3 5 | 1 8 6
Subtracting df_other
from df
yields:
df.sub(df_other)
A B0 -7 -31 -5 -1
Broadcasting
Consider the following DataFrame:
df = pd.DataFrame({"A":[2,3], "B":[4,5]})df
A B0 2 41 3 5
Row-wise subtraction
By default, axis=1
, which means that other
will be broadcasted for each row in df
:
df.sub([6,7]) # axis=1
A B0 -4 -31 -3 -2
Here, we're doing the following element-wise subtraction:
2-6 4-73-6 5-7
Column-wise subtraction
To broadcast other
for each column in df
, set axis=0
like so:
df.sub([6,7], axis=0)
A B0 -4 -21 -4 -2
Here, we're doing the following element-wise subtraction:
2-6 4-63-7 5-7
Specifying fill_value
Consider the following DataFrames:
df = pd.DataFrame({"A":[2,np.NaN], "B":[np.NaN,5]})df_other = pd.DataFrame({"A":[10,20],"B":[np.NaN,np.NaN]})
A B | A B0 2.0 NaN | 0 10 NaN1 NaN 5.0 | 1 20 NaN
By default, when we perform subtraction using the sub(~)
method, any operation with NaN
results in NaN
:
df.sub(df_other)
A B0 -8.0 NaN1 NaN NaN
We can fill the NaN
values before we perform subtraction by using the fill_value
parameter like so:
df.sub(df_other, fill_value=100)
A B0 -8.0 NaN1 80.0 -95.0
Here, notice how the result of the subtraction between two NaN
is still NaN
, regardless of fill_value
.