Pandas DataFrame | rdiv method
Start your free 7-days trial now!
Pandas DataFrame.rdiv(~)
method divides a scalar, sequence, Series or DataFrame by the values in the source DataFrame, that is:
other / DataFrame
Note that this is just the reverse of DataFrame.div(~)
:
DataFrame / other
Unless you use the parameters axis
, level
and fill_value
, the rdiv(~)
is equivalent to performing division using the /
operator. Also rdiv(~)
is equivalent to rtruediv(~)
.
Parameters
1. other
link | scalar
or sequence
or Series
or DataFrame
The resulting DataFrame will be other
divided by the source DataFrame.
2. axis
link | int
or string
| optional
Whether to broadcast other
for each column or row of the source DataFrame:
Axis | Description |
---|---|
|
|
|
|
This is only relevant if the shape of the source DataFrame and that of other
does not align. By default, axis=1
.
3. level
| int
or string
| optional
The name or the integer index of the level to consider. This is relevant only if your DataFrame is Multi-index.
4. fill_value
link | float
or None
| optional
The value to replace NaN
before the computation. Note that the division of two NaN
will still result in NaN
. By default, fill_value=None
.
Return Value
A new DataFrame resulting from the division.
Examples
Basic usage
Consider the following DataFrames:
df = pd.DataFrame({"A":[1,10], "B":[100,1000]})df_other = pd.DataFrame({"A":[3,4], "B":[5,6]})
A B | A B0 1 100 | 0 3 51 10 1000 | 1 4 6
Computing division yields:
df.rdiv(df_other)
A B0 3.0 0.0501 0.4 0.006
Note this is equivalent to the following:
df_other / df
A B0 3.0 0.0501 0.4 0.006
Broadcasting
Consider the following DataFrame:
df = pd.DataFrame({"A":[1,10], "B":[100,1000]})df
A B0 1 1001 10 1000
Row-wise division
By default, axis=1
, which means that other
will be broadcasted for each row in df
:
df.rdiv([3,4]) # axis=1
A B0 3.0 0.0401 0.3 0.004
Here, we're performing the following element-wise division:
3/1 4/1003/10 4/1000
Column-wise division
To broadcast other
for each column in df
, set axis=0
like so:
df.rdiv([3,4], axis=0)
A B0 3.0 0.0301 0.4 0.004
Here, we're performing the following element-wise division:
3/1 3/1004/10 4/1000
Specifying fill_value
Consider the following DataFrames:
df = pd.DataFrame({"A":[3,np.NaN], "B":[np.NaN,4]})df_other = pd.DataFrame({"A":[12,20],"B":[np.NaN,np.NaN]})
A B | A B0 3.0 NaN | 0 12 NaN1 NaN 4.0 | 1 20 NaN
By default, when we compute the division using rdiv(~)
, any operation with NaN
results in NaN
:
df.rdiv(df_other)
A B0 4.0 NaN1 NaN NaN
We can fill the NaN
values before we perform division by using the fill_value
parameter like so:
df.rdiv(df_other, fill_value=2)
A B0 4.0 NaN1 10.0 0.5
Here, notice how the division between two NaN
still results in NaN
regardless of fill_value
.