Pandas DataFrame | ne method
Start your free 7-days trial now!
Pandas DataFrame.ne(~)
method returns a DataFrame of booleans where True
indicates an entry that is not equal (!=
) to the specified value.
Missing values (NaN
) are considered to be distinct, that is, NaN!=NaN
will evaluate to True
.
Parameters
1. other
link | scalar
or sequence
or Series
or DataFrame
The value(s) to compare with.
2. axis
link | int
or string
| optional
Whether to compare each row or column:
Axis | Description |
---|---|
| Compare each column. |
| Compare each row. |
By default, axis="columns"
.
3. level
| int
or string
| optional
The levels to perform comparison on. This is only relevant if your source DataFrame is a multi-index.
Return Value
A DataFrame
of booleans
.
Examples
Consider the following DataFrame:
df = pd.DataFrame({"A":[3,4],"B":[5,6]})df
A B0 3 51 4 6
Passing in a acalar
To check for values not equal to 5
in the DataFrame:
df.ne(5)
A B0 True False1 True True
Comparing rows
By default, axis=1
, which means that passing in a sequence will result in a comparison with each row:
df.ne([4,5]) # axis=1
A B0 True False1 False True
Here, we are comparing each row of the source DataFrame with [4,5]
. This means that we are performing the following pair-wise comparisons:
(row one) [3,5] != [4,5] = [True, False](row two) [4,6] != [4,5] = [False, True]
We show df
again for your reference:
df
A B0 3 51 4 6
Comparing columns
By setting axis=0
, we can compare each column with the specified sequence:
df.ne([4,5], axis=0)
A B0 True True1 True True
Here, we're performing the following pair-wise comparisons:
(column A) [3,4] != [4,5] = [True, True](column B) [5,6] != [4,5] = [True, True]