PySpark
keyboard_arrow_down 147 guides
chevron_leftPySpark DataFrame
Method aliasMethod coalesceMethod collectMethod colRegexMethod corrMethod countMethod covMethod describeMethod distinctMethod dropMethod dropDuplicatesMethod dropnaMethod exceptAllMethod fillnaMethod filterMethod foreachMethod groupByMethod headMethod intersectMethod intersectAllMethod joinMethod limitMethod orderByMethod printSchemaMethod randomSplitMethod repartitionMethod replaceMethod sampleMethod sampleByMethod selectMethod selectExprMethod showMethod sortMethod summaryMethod tailMethod takeMethod toDFMethod toJSONMethod toPandasMethod transformMethod unionMethod unionByNameMethod whereMethod withColumnMethod withColumnRenamedProperty columnsProperty dtypesProperty rdd
check_circle
Mark as learned thumb_up
1
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
PySpark DataFrame | corr method
schedule Aug 12, 2023
Last updated local_offer
Tags PySpark
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
PySpark DataFrame's corr(~)
method returns the correlation of the specified numeric columns as a float.
Parameters
1. col1
| string
The first column.
2. col2
| string
The second column.
3. method
| string
| optional
The type of correlation to compute. The only correlation type supported currently is the Pearson Correlation Coefficient.
Return Value
A float
.
Examples
Consider the following PySpark DataFrame:
df = spark.createDataFrame([("Alex", 180, 80), ("Bob", 170, 70), ("Cathy", 160, 70)], ["name", "height", "weight"])
+-----+------+------+| name|height|weight|+-----+------+------+| Alex| 180| 80|| Bob| 170| 70||Cathy| 160| 70|+-----+------+------+
Computing the correlation of two numeric PySpark columns
To compute the correlation between the height
and weight
columns:
df.corr("height","weight")
0.8660254037844387
Here, we see that the height
and weight
are positively correlated with a Pearson correlation coefficient of around 0.87
.
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
Official PySpark Documentation
https://spark.apache.org/docs/3.2.0/api/python/reference/api/pyspark.sql.DataFrame.corr.html
thumb_up
1
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!