search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to

PySpark DataFrame | drop method

schedule Aug 12, 2023
Last updated
local_offer
PySpark
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

PySpark DataFrame's drop(~) method returns a new DataFrame with the specified columns dropped.

NOTE

Trying to drop a column that does not exist will not raise an error - the original DataFrame will be returned instead.

Parameters

1. *cols | string or Column

The columns to drop.

Return Value

A new PySpark DataFrame.

Examples

Consider the following PySpark DataFrame:

df = spark.createDataFrame([["Alex", 25, True], ["Bob", 30, False]], ["name", "age", "is_married"])
df.show()
+----+---+----------+
|name|age|is_married|
+----+---+----------+
|Alex| 25| true|
| Bob| 30| false|
+----+---+----------+

Dropping a single column of PySpark DataFrame

To drop the name column:

df.drop("name").show()
+---+----------+
|age|is_married|
+---+----------+
| 25| true|
| 30| false|
+---+----------+

Note that the original df is kept intact.

We can also supply the column as a Column object using sql.functions:

import pyspark.sql.functions as F
df.drop(F.col("name")).show()
+---+----------+
|age|is_married|
+---+----------+
| 25| true|
| 30| false|
+---+----------+

Dropping multiple columns of PySpark DataFrame

To drop columns name and age:

df.drop("name", "age").show()
+----------+
|is_married|
+----------+
| true|
| false|
+----------+
WARNING

We cannot remove columns by supplying multiple Column objects:

import pyspark.sql.functions as F
df.drop(F.col("name"), F.col("age")).show()
TypeError: each col in the param list should be a string

Dropping columns given a list of column labels

To drop columns given a list of column labels:

cols = ["name", "age"]
df.drop(*cols).show()
+----------+
|is_married|
+----------+
| true|
| false|
+----------+

Here, *cols converts the list into positional arguments.

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
2
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!