PySpark
keyboard_arrow_down 147 guides
chevron_leftPySpark DataFrame
Method aliasMethod coalesceMethod collectMethod colRegexMethod corrMethod countMethod covMethod describeMethod distinctMethod dropMethod dropDuplicatesMethod dropnaMethod exceptAllMethod fillnaMethod filterMethod foreachMethod groupByMethod headMethod intersectMethod intersectAllMethod joinMethod limitMethod orderByMethod printSchemaMethod randomSplitMethod repartitionMethod replaceMethod sampleMethod sampleByMethod selectMethod selectExprMethod showMethod sortMethod summaryMethod tailMethod takeMethod toDFMethod toJSONMethod toPandasMethod transformMethod unionMethod unionByNameMethod whereMethod withColumnMethod withColumnRenamedProperty columnsProperty dtypesProperty rdd
check_circle
Mark as learned thumb_up
2
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
PySpark DataFrame | drop method
schedule Aug 12, 2023
Last updated local_offer
Tags PySpark
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
PySpark DataFrame's drop(~)
method returns a new DataFrame with the specified columns dropped.
NOTE
Trying to drop a column that does not exist will not raise an error - the original DataFrame will be returned instead.
Parameters
1. *cols
| string
or Column
The columns to drop.
Return Value
A new PySpark DataFrame.
Examples
Consider the following PySpark DataFrame:
+----+---+----------+|name|age|is_married|+----+---+----------+|Alex| 25| true|| Bob| 30| false|+----+---+----------+
Dropping a single column of PySpark DataFrame
To drop the name
column:
+---+----------+|age|is_married|+---+----------+| 25| true|| 30| false|+---+----------+
Note that the original df
is kept intact.
We can also supply the column as a Column
object using sql.functions
:
import pyspark.sql.functions as F
+---+----------+|age|is_married|+---+----------+| 25| true|| 30| false|+---+----------+
Dropping multiple columns of PySpark DataFrame
To drop columns name
and age
:
+----------+|is_married|+----------+| true|| false|+----------+
WARNING
We cannot remove columns by supplying multiple Column
objects:
import pyspark.sql.functions as F
TypeError: each col in the param list should be a string
Dropping columns given a list of column labels
To drop columns given a list of column labels:
cols = ["name", "age"]
+----------+|is_married|+----------+| true|| false|+----------+
Here, *cols
converts the list into positional arguments.
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
Official PySpark Documentation
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.DataFrame.drop.html
thumb_up
2
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!