NumPy
keyboard_arrow_down 319 guides
chevron_leftCookbooks
Accessing a value in a 2D arrayAccessing columns of a 2D arrayAccessing rows of a 2D arrayCalculating the determinant of a matrixChecking allowed values for a NumPy data typeChecking if a NumPy array is a view or copyChecking the version of NumPyChecking whether a NumPy array contains a given rowComputing Euclidean distance using NumpyConcatenating 1D arraysConverting array to lowercaseConverting type of NumPy array to stringCreating a copy of an arrayDifference between Python List and Numpy arrayDifference between the methods array_equal and array_equivDifference between the methods mod and fmodDifference between the methods power and float_powerFinding the closest value in an arrayFinding the Index of Largest Value in a Numpy ArrayFinding the Index of Smallest Value in a Numpy ArrayFinding the most frequent value in a NumPy arrayFlattening Numpy arraysGetting constant PiGetting elements from a two dimensional array using two dimensional array of indicesGetting indices of N maximum valuesGetting indices of N minimum valuesGetting the number of columns of a 2D arrayGetting the number of non-zero elements in a NumPy arrayGetting the number of rows of a 2D arrayInitializing an array of onesInitializing an array of zerosInitializing an identity matrixLimiting array values to a certain rangePerforming linear regressionPrinting full or truncated NumPy arrayPrinting large Numpy arrays without truncationRemoving rows containing NaN in a NumPy arrayReversing a NumPy arraySaving NumPy array to a fileShape of Numpy ArraysSorting value of one array according to anotherSuppressing scientific notation
check_circle
Mark as learned thumb_up
1
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
Removing rows containing NaN in a NumPy array
schedule Aug 10, 2023
Last updated local_offer
Tags Python●NumPy
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
To remove rows containing NaN
in a NumPy array, we can use a combination of the isnan(~)
and any(~)
methods.
Example
Consider the following array:
array([[ 1., 2., nan], [ 4., 5., 6.]])
To remove rows containing NaN
:
Explanation
In the above code snippet, first we are checking each element in array a
for np.nan
using isnan(~)
:
np.isnan(a)
array([[False, False, True], [False, False, False]])
Next any(axis=1)
returns True
if at least one element in each row evaluates to True
:
np.isnan(a).any(axis=1)
array([ True, False])
Finally, the bitwise NOT (~
) operator inverts the True
and False
values:
~np.isnan(a).any(axis=1)
array([False, True])
Now we apply this boolean mask to the original array a
to return only the rows not containing NaN
:
a[~np.isnan(a).any(axis=1)]
array([[4., 5., 6.]])
Published by Arthur Yanagisawa
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
1
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!