search
Search
menu search toc more_vert
Guest 0reps
Thanks for the thanks!
close
account_circle
Profile
exit_to_app
Sign out
help Ask a question
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview Doc Search Code Search Beta SORRY NOTHING FOUND!
mic
Start speaking... Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
A
A
brightness_medium
share
arrow_backShare Twitter Facebook

# NumPy | array method

NumPy
chevron_right
Documentation
schedule Jul 1, 2022
Last updated
local_offer PythonNumPy
Tags

Numpy's `array(~)` method constructs a Numpy array out of the provided object, which is typically a list or a tuple.

# Parameters

1. `object` | `array-like objects`

Data source used to build a Numpy array. Typically, we use a list or a tuple.

2. `dtype`link | `string` or `type` | `optional`

Type of data stored in the Numpy array. By default, type will be inferred.

3. `ndmin`link | `int` | `optional`

The minimum number of dimensions the Numpy array will have.

# Return value

A Numpy array with the data-type as specified.

# Examples

## Creating Numpy array using list

``` np.array([1,2,3]) array([1, 2, 3]) ```

The inferred type of the data is `int`.

## Creating Numpy array using tuple

``` np.array((1,2,3)) array([1, 2, 3]) ```

## Creating Numpy array with explicit type

``` np.array((1,2,3), float)np.array((1,2,3), "float") array([1., 2., 3.]) ```

Notice how we have `1.` instead of just `1` - this means that the data in the Numpy array is of type `float` instead of `int`. You can also provide the `dtype` in string form, like `"float"`.

## Creating 2D Numpy array

``` np.array([[1, 2, 3], [4, 5, 6]]) array([[1, 2, 3],       [4, 5, 6]]) ```

## Creating 2D Numpy array using ndmin

``` np.array([1, 2], ndmin=2) array([[1, 2]]) ```

Here, normally we would have a 1D Numpy array, but since we specified `ndmin=2`, we get a 2D Numpy array instead.

mail