NumPy | array method
Start your free 7-days trial now!
Numpy's array(~)
method constructs a Numpy array out of the provided object, which is typically a list or a tuple.
Parameters
1. object
| array-like objects
Data source used to build a Numpy array. Typically, we use a list or a tuple.
2. dtype
link | string
or type
| optional
Type of data stored in the Numpy array. By default, type will be inferred.
3. ndmin
link | int
| optional
The minimum number of dimensions the Numpy array will have.
Return value
A Numpy array with the data-type as specified.
Examples
Creating Numpy array using list
np.array([1,2,3])
array([1, 2, 3])
The inferred type of the data is int
.
Creating Numpy array using tuple
np.array((1,2,3))
array([1, 2, 3])
Creating Numpy array with explicit type
np.array((1,2,3), float)np.array((1,2,3), "float")
array([1., 2., 3.])
Notice how we have 1.
instead of just 1
- this means that the data in the Numpy array is of type float
instead of int
. You can also provide the dtype
in string form, like "float"
.
Creating 2D Numpy array
np.array([[1, 2, 3], [4, 5, 6]])
array([[1, 2, 3], [4, 5, 6]])
Creating 2D Numpy array using ndmin
np.array([1, 2], ndmin=2)
array([[1, 2]])
Here, normally we would have a 1D Numpy array, but since we specified ndmin=2
, we get a 2D Numpy array instead.