NumPy | all method
Start your free 7-days trial now!
Numpy's all(~)
method returns True
if all elements in the input array evaluate to True
. Note that missing values (np.NaN) would evaluate to True.
Parameters
1. a
| array_like
The input array.
2. axis
| int
| optional
For 2D arrays, the allowed values are as follows:
Axis | Description |
---|---|
0 | Performed column-wise |
1 | Performed row-wise |
| Performed on entire DataFrame |
By default, axis=None
.
3. out
| Numpy array
| optional
Instead of creating a new array, you can place the computed result into the array specified by out
.
4. where
| array
of boolean
| optional
Values that are flagged as False will be ignored, that is, their original value will be uninitialized. If you specified the out parameter, the behavior is slightly different - the original value will be kept intact.
Return value
If axis=None, then a boolean is returned. Otherwise, a Numpy array of booleans is returned.
Examples
Basic usage
np.all([True, False, True])
False
np.all([5, 0, 0])
False
2D arrays
Consider the following 2D array:
a = np.array([[0,np.NaN], [0,2]])a
array([[ 0., nan], [ 0., 2.]])
All values
np.all(a)
False
Column-wise
np.all(a, axis=0)
array([False, True])
Row-wise
np.all(a, axis=1) # remember, NaN still evaluates to True
array([False, False])