search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
chevron_leftDocumentation
Method argpartition
NumPy Random Generator4 topics
Method choiceMethod dotMethod finfoMethod histogramMethod iinfoMethod maxMethod meanMethod placeMethod rootsMethod seedMethod uniformMethod viewMethod zerosMethod sumObject busdaycalendarMethod is_busdayProperty dtypeMethod uniqueMethod loadtxtMethod vsplitMethod fliplrMethod setdiff1dMethod msortMethod argsortMethod lexsortMethod aroundMethod nanmaxMethod nanminMethod nanargmaxMethod nanargminMethod argmaxMethod argminProperty itemsizeMethod spacingMethod fixMethod ceilMethod diffProperty flatProperty realProperty baseMethod flipMethod deleteMethod amaxMethod aminMethod logical_xorMethod logical_orMethod logical_notMethod logical_andMethod logaddexpMethod logaddexp2Method logspaceMethod not_equalMethod equalMethod greater_equalMethod lessMethod less_equalMethod remainderMethod modMethod emptyMethod greaterMethod isfiniteMethod busday_countMethod repeatMethod varMethod random_sampleMethod randomMethod signMethod stdMethod absoluteMethod absMethod sortMethod randintMethod isrealMethod linspaceMethod gradientMethod allMethod sampleProperty TProperty imagMethod covMethod insertMethod logMethod log1pMethod exp2Method expm1Method expMethod arccosMethod cosMethod arcsinMethod sinMethod tanMethod fromiterMethod trim_zerosMethod diagflatMethod savetxtMethod count_nonzeroProperty sizeProperty shapeMethod reshapeMethod resizeMethod triuMethod trilMethod eyeMethod arangeMethod fill_diagonalMethod tileMethod saveMethod transposeMethod swapaxesMethod meshgridProperty mgridMethod rot90Method log2Method radiansMethod deg2radMethod rad2degMethod degreesMethod log10Method appendMethod cumprodProperty nbytesMethod tostringProperty dataMethod modfMethod fmodMethod tolistMethod datetime_as_stringMethod datetime_dataMethod array_splitMethod itemsetMethod floorMethod put_along_axisMethod cumsumMethod bincountMethod putMethod putmaskMethod takeMethod hypotMethod sqrtMethod squareMethod floor_divideMethod triMethod signbitMethod flattenMethod ravelMethod rollMethod isrealobjMethod diagMethod diagonalMethod quantileMethod onesMethod iscomplexobjMethod iscomplexMethod isscalarMethod divmodMethod isnatMethod percentileMethod isnanMethod divideMethod addMethod reciprocalMethod positiveMethod subtractMethod medianMethod isneginfMethod isposinfMethod float_powerMethod powerMethod negativeMethod maximumMethod averageMethod isinfMethod multiplyMethod busday_offsetMethod identityMethod interpMethod squeezeMethod get_printoptionsMethod savez_compressedMethod savezMethod loadMethod asfarrayMethod clipMethod arrayMethod array_equivMethod array_equalMethod frombufferMethod set_string_functionMethod matmulMethod genfromtxtMethod fromfunctionMethod asscalarMethod searchsortedMethod full_likeMethod fullMethod shares_memoryMethod ptpMethod digitizeMethod argwhereMethod geomspaceMethod zeros_likeMethod fabsMethod flatnonzeroMethod vstackMethod dstackMethod fromstringMethod tobytesMethod expand_dimsMethod ranfMethod arctanMethod itemMethod extractMethod compressMethod chooseMethod asarrayMethod asmatrixMethod allcloseMethod iscloseMethod anyMethod corrcoefMethod truncMethod prodMethod crossMethod true_divideMethod hsplitMethod splitMethod rintMethod ediff1dMethod lcmMethod gcdMethod cbrtMethod flipudProperty ndimMethod array2stringMethod set_printoptionsMethod whereMethod hstack
Char32 topics
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

NumPy | histogram method

schedule Aug 10, 2023
Last updated
local_offer
PythonNumPy
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

NumPy's histogram(~) method computes a histogram (frequency-count diagram).

Parameters

1. a | array-like

The input array.

2. binslink | array-like | optional

The desired number of bins. If an array is provided, then it must contain edges. By default, we get 10 equal-width bins.

3. rangelink | tuple of float | optional

By default, the range is set to (a.min(), a.max()).

4. weightslink | array-like | optional

An array containing the weights placed on each of the input values. If a value falls in a particular bin, instead of incrementing the count by one, we increment by the corresponding weight. The shape must be the same as that of a. By default, the weights are all one.

5. densitylink | boolean | optional

Whether to normalise to a probability density function (i.e. total area equaling one). By default, density=False.

Return value

A tuple of two NumPy arrays:

  1. The values of the histogram (i.e. the frequency counts)

  2. The bin edges

Examples

Basic usage

my_hist, bin_edges = np.histogram([1,3,6,6,10])
print("hist:", my_hist)
print("bin_edges:", bin_edges)
hist: [1 0 1 0 0 2 0 0 0 1]
bin_edges: [ 1. 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10. ]

Here, the bin_edges represent the intervals of the bins, and the hist represents the number of values that fall between the interval. For instance, there is a total of one item that falls between the interval 1 and 1.9, so we get a value 1 for the spot in the histogram.

Specifying the number of bins

my_hist, bin_edges = np.histogram([1,3,6,6,10], bins=5)
print("hist:", my_hist)
print("bin_edges:", bin_edges)
hist: [1 1 2 0 1]
bin_edges: [ 1. 2.8 4.6 6.4 8.2 10. ]

Specifying bin edges

my_hist, bin_edges = np.histogram([1,3,6,6,10], bins=[1,5,10])
print("hist:", my_hist)
print("bin_edges:", bin_edges)
hist: [2 3]
bin_edges: [ 1 5 10]

Specifying a range

my_hist, bin_edges = np.histogram([1,3,6,6,10], range=(0,20))
print("hist:", my_hist)
print("bin_edges:", bin_edges)
hist: [1 1 0 2 0 1 0 0 0 0]
bin_edges: [ 0. 2. 4. 6. 8. 10. 12. 14. 16. 18. 20.]

Specifying weights

my_hist, bin_edges = np.histogram([1,3,6,6,10], weights=[1,5,1,1,1])
print("hist:", my_hist)
print("bin_edges:", bin_edges)
hist: [1 0 5 0 0 2 0 0 0 1]
bin_edges: [ 1. 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10. ]

The reason why we get a 5 there is that the two 6s we have in the input array obviously fall in the same bin, and since their respective weights are 4 and 5, we end up with a total bin count of 4+5=9.

Normalising

my_hist, bin_edges = np.histogram([1,3,6,6,10], density=True)
print("hist:", my_hist)
print("bin_edges:", bin_edges)
hist: [0.22222222 0. 0.22222222 0. 0. 0.44444444 0. 0. 0. 0.22222222]
bin_edges: [ 1. 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10. ]
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!