NumPy | cumsum method
Start your free 7-days trial now!
Numpy's cumsum(~)
method returns an array holding the cumulative sums of the input array.
Parameters
1. a
| array_like
The input array.
2. axis
| None
or int
| optional
The allowed values are as follows:
Axis | Meaning |
---|---|
0 | Cumulative sum is computed column-wise |
1 | Cumulative sum is computed row-wise |
None | Cumulative sum is computed using entire array |
By default, axis=None
.
3. dtype
| string
or type
| optional
The desired data-type of the returned array. By default, the data-type is the same as that of the input array.
4. out
| Numpy array
| optional
A Numpy array to place the results in.
Return value
A Numpy array holding the cumulative sum of the input elements.
Examples
1D array
To compute the cumulative sum of a 1D array:
x = np.array([1,2,3])np.cumsum(x)
array([1, 3, 6])
Here, the we are performing the following computations:
[0] 1 = 1[1] 1 + 2 = 3[2] 1 + 2 + 3 = 6
2D array
Consider the following 2D array:
x = np.array([[1,2], [3,4]])x
array([[1, 2], [3, 4]])
All values
To compute the cumulative sums of all values:
x = np.array([[1,2], [3,4]])np.cumsum(x)
array([ 1, 3, 6, 10])
Column-wise
To compute the cumulative sums column-wise, set axis=0
:
x = np.array([[1,2], [3,4]])np.cumsum(x, axis=0)
array([[1, 2], [4, 6]])
Row-wise
To compute the cumulative sums row-wise, set axis=1
:
x = np.array([[1,2], [3,4]])np.cumsum(x, axis=1)
array([[1, 3], [3, 7]])
Specifying a datatype
To obtain an array of data-type float
:
x = np.array([1,2,3])np.cumsum(x, dtype=float)
array([1., 3., 6.])
Here, the .
means that the numbers are floats.