search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
chevron_leftDocumentation
Method argpartition
NumPy Random Generator4 topics
Method choiceMethod dotMethod finfoMethod histogramMethod iinfoMethod maxMethod meanMethod placeMethod rootsMethod seedMethod uniformMethod viewMethod zerosMethod sumObject busdaycalendarMethod is_busdayProperty dtypeMethod uniqueMethod loadtxtMethod vsplitMethod fliplrMethod setdiff1dMethod msortMethod argsortMethod lexsortMethod aroundMethod nanmaxMethod nanminMethod nanargmaxMethod nanargminMethod argmaxMethod argminProperty itemsizeMethod spacingMethod fixMethod ceilMethod diffProperty flatProperty realProperty baseMethod flipMethod deleteMethod amaxMethod aminMethod logical_xorMethod logical_orMethod logical_notMethod logical_andMethod logaddexpMethod logaddexp2Method logspaceMethod not_equalMethod equalMethod greater_equalMethod lessMethod less_equalMethod remainderMethod modMethod emptyMethod greaterMethod isfiniteMethod busday_countMethod repeatMethod varMethod random_sampleMethod randomMethod signMethod stdMethod absoluteMethod absMethod sortMethod randintMethod isrealMethod linspaceMethod gradientMethod allMethod sampleProperty TProperty imagMethod covMethod insertMethod logMethod log1pMethod exp2Method expm1Method expMethod arccosMethod cosMethod arcsinMethod sinMethod tanMethod fromiterMethod trim_zerosMethod diagflatMethod savetxtMethod count_nonzeroProperty sizeProperty shapeMethod reshapeMethod resizeMethod triuMethod trilMethod eyeMethod arangeMethod fill_diagonalMethod tileMethod saveMethod transposeMethod swapaxesMethod meshgridProperty mgridMethod rot90Method log2Method radiansMethod deg2radMethod rad2degMethod degreesMethod log10Method appendMethod cumprodProperty nbytesMethod tostringProperty dataMethod modfMethod fmodMethod tolistMethod datetime_as_stringMethod datetime_dataMethod array_splitMethod itemsetMethod floorMethod put_along_axisMethod cumsumMethod bincountMethod putMethod putmaskMethod takeMethod hypotMethod sqrtMethod squareMethod floor_divideMethod triMethod signbitMethod flattenMethod ravelMethod rollMethod isrealobjMethod diagMethod diagonalMethod quantileMethod onesMethod iscomplexobjMethod iscomplexMethod isscalarMethod divmodMethod isnatMethod percentileMethod isnanMethod divideMethod addMethod reciprocalMethod positiveMethod subtractMethod medianMethod isneginfMethod isposinfMethod float_powerMethod powerMethod negativeMethod maximumMethod averageMethod isinfMethod multiplyMethod busday_offsetMethod identityMethod interpMethod squeezeMethod get_printoptionsMethod savez_compressedMethod savezMethod loadMethod asfarrayMethod clipMethod arrayMethod array_equivMethod array_equalMethod frombufferMethod set_string_functionMethod matmulMethod genfromtxtMethod fromfunctionMethod asscalarMethod searchsortedMethod full_likeMethod fullMethod shares_memoryMethod ptpMethod digitizeMethod argwhereMethod geomspaceMethod zeros_likeMethod fabsMethod flatnonzeroMethod vstackMethod dstackMethod fromstringMethod tobytesMethod expand_dimsMethod ranfMethod arctanMethod itemMethod extractMethod compressMethod chooseMethod asarrayMethod asmatrixMethod allcloseMethod iscloseMethod anyMethod corrcoefMethod truncMethod prodMethod crossMethod true_divideMethod hsplitMethod splitMethod rintMethod ediff1dMethod lcmMethod gcdMethod cbrtMethod flipudProperty ndimMethod array2stringMethod set_printoptionsMethod whereMethod hstack
Char32 topics
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

NumPy | lexsort method

schedule Aug 10, 2023
Last updated
local_offer
PythonNumPy
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Numpy's lexsort(~) method returns the sorted integer indices of multiple input arrays that correspond to column data. See the examples below for clarification.

Parameters

1. keys | array_like of sequences

The keys you want sorted.

2. axis | int | optional

The axis along which to sort the input array. For 2D arrays, the allowed values are as follows:

Value

Meaning

None

Flattens the array and sorts it

0

Sorts column-wise

1

Sorts row-wise

By default, axis=-1 which means that sorting is performed only on the last axis. For 2D arrays, this means that the default sorting behaviour is row-wise.

Return value

A Numpy array that holds the integer indices of the sorted columns.

Examples

Suppose we have the following data about 3 people:

First name

Last name

Bob

Marley

Alex

Davis

Cathy

Watson

In code, this translates to the following:

first_names = np.array(["Bob", "Alex", "Cathy"])
last_names = np.array(["Marley", "Davis", "Watson"])

What is important here is that our data is split by columns - we don't have a single array that houses all our data.

Sorting by a single column

To sort by a single column, say first name:

first_names = np.array(["Bob", "Alex", "Cathy"])
last_names = np.array(["Marley", "Davis", "Watson"])
sorted_indices = np.lexsort([first_names])
sorted_indices
array([1, 0, 2])

What is returned here is a list of indices of the sorted data - ["Alex Davis", "Bob Marley", "Cathy Watson"] have original indices of 1, 0 and 2 respectively.

To see the sorted data:

for i in sorted_indices:
print(first_names[i] + " " + last_names[i])
Alex Davis
Bob Marley
Cathy Watson

Sorting by multiple columns

To sort by multiple columns:

first_names = np.array(["Bob", "Alex", "Alex"])
last_names = np.array(["Marley", "Davis", "Beck"])
sorted_indices = np.lexsort([first_names, last_names])
sorted_indices
array([2, 1, 0])

Here, our first key (i.e. first_names) have duplicate values, so for those values, they are sorted by their last name - this is why Alex Beck comes before Alex Davis.

To see the sorted data:

for i in sorted_indices:
print(first_names[i] + " " + last_names[i])
Alex Beck
Alex Davis
Bob Marley
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!