NumPy
keyboard_arrow_down 319 guides
chevron_leftDocumentation
Method argpartition
NumPy Random Generator4 topics
Method choiceMethod dotMethod finfoMethod histogramMethod iinfoMethod maxMethod meanMethod placeMethod rootsMethod seedMethod uniformMethod viewMethod zerosMethod sumObject busdaycalendarMethod is_busdayProperty dtypeMethod uniqueMethod loadtxtMethod vsplitMethod fliplrMethod setdiff1dMethod msortMethod argsortMethod lexsortMethod aroundMethod nanmaxMethod nanminMethod nanargmaxMethod nanargminMethod argmaxMethod argminProperty itemsizeMethod spacingMethod fixMethod ceilMethod diffProperty flatProperty realProperty baseMethod flipMethod deleteMethod amaxMethod aminMethod logical_xorMethod logical_orMethod logical_notMethod logical_andMethod logaddexpMethod logaddexp2Method logspaceMethod not_equalMethod equalMethod greater_equalMethod lessMethod less_equalMethod remainderMethod modMethod emptyMethod greaterMethod isfiniteMethod busday_countMethod repeatMethod varMethod random_sampleMethod randomMethod signMethod stdMethod absoluteMethod absMethod sortMethod randintMethod isrealMethod linspaceMethod gradientMethod allMethod sampleProperty TProperty imagMethod covMethod insertMethod logMethod log1pMethod exp2Method expm1Method expMethod arccosMethod cosMethod arcsinMethod sinMethod tanMethod fromiterMethod trim_zerosMethod diagflatMethod savetxtMethod count_nonzeroProperty sizeProperty shapeMethod reshapeMethod resizeMethod triuMethod trilMethod eyeMethod arangeMethod fill_diagonalMethod tileMethod saveMethod transposeMethod swapaxesMethod meshgridProperty mgridMethod rot90Method log2Method radiansMethod deg2radMethod rad2degMethod degreesMethod log10Method appendMethod cumprodProperty nbytesMethod tostringProperty dataMethod modfMethod fmodMethod tolistMethod datetime_as_stringMethod datetime_dataMethod array_splitMethod itemsetMethod floorMethod put_along_axisMethod cumsumMethod bincountMethod putMethod putmaskMethod takeMethod hypotMethod sqrtMethod squareMethod floor_divideMethod triMethod signbitMethod flattenMethod ravelMethod rollMethod isrealobjMethod diagMethod diagonalMethod quantileMethod onesMethod iscomplexobjMethod iscomplexMethod isscalarMethod divmodMethod isnatMethod percentileMethod isnanMethod divideMethod addMethod reciprocalMethod positiveMethod subtractMethod medianMethod isneginfMethod isposinfMethod float_powerMethod powerMethod negativeMethod maximumMethod averageMethod isinfMethod multiplyMethod busday_offsetMethod identityMethod interpMethod squeezeMethod get_printoptionsMethod savez_compressedMethod savezMethod loadMethod asfarrayMethod clipMethod arrayMethod array_equivMethod array_equalMethod frombufferMethod set_string_functionMethod matmulMethod genfromtxtMethod fromfunctionMethod asscalarMethod searchsortedMethod full_likeMethod fullMethod shares_memoryMethod ptpMethod digitizeMethod argwhereMethod geomspaceMethod zeros_likeMethod fabsMethod flatnonzeroMethod vstackMethod dstackMethod fromstringMethod tobytesMethod expand_dimsMethod ranfMethod arctanMethod itemMethod extractMethod compressMethod chooseMethod asarrayMethod asmatrixMethod allcloseMethod iscloseMethod anyMethod corrcoefMethod truncMethod prodMethod crossMethod true_divideMethod hsplitMethod splitMethod rintMethod ediff1dMethod lcmMethod gcdMethod cbrtMethod flipudProperty ndimMethod array2stringMethod set_printoptionsMethod whereMethod hstackChar32 topics
check_circle
Mark as learned thumb_up
1
thumb_down
0
chat_bubble_outline
0
Comment auto_stories Bi-column layout
settings
NumPy | argwhere method
schedule Aug 12, 2023
Last updated local_offer
Tags Python●NumPy
tocTable of Contents
expand_more Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!
Start your free 7-days trial now!
NumPy's argwhere(~)
method returns the indices of non-zero values.
Parameters
1. a
| array_like
The input array.
Return value
A NumPy array of indices of non-zero values. If the input array is 1D or 2D, then the returned array will be 2D.
Examples
Basic usage
np.argwhere(x)
array([[0], [1], [2]])
Here, since all values in x are non-zero, all indices are returned. Notice the returned array is 2D.
Using a mask
In NumPy, False
values are equivalent to 0, while True
values are equivalent to 1. This means that the argwhere(~)
can be used for masks.
Suppose we wanted to determine the indices of values larger than 2. We can do so like follows:
mask = x > 2
array([False, False, True, True])
Applying the mask gives:
np.argwhere(mask)
array([[2], [3]])
Two-dimensional arrays
Suppose we wanted to determine the indices of values larger than 2 in a 2D Numpy array
mask = x > 2
array([[False, False], [ True, True], [ True, True]])
Applying the mask gives:
np.argwhere(mask)
array([[1, 0], [1, 1], [2, 0], [2, 1]])
The way to interpret this is as follows:
[1,0] -> row 1, column 0 is non-zero (i.e. greater than 2)[1,1] -> row 1, column 1 is non-zero[2,0] -> row 2, column 0 is non-zero[2,1] -> row 2, column 1 is non-zero
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
1
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!