search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
chevron_leftDocumentation
Method argpartition
NumPy Random Generator4 topics
Method choiceMethod dotMethod finfoMethod histogramMethod iinfoMethod maxMethod meanMethod placeMethod rootsMethod seedMethod uniformMethod viewMethod zerosMethod sumObject busdaycalendarMethod is_busdayProperty dtypeMethod uniqueMethod loadtxtMethod vsplitMethod fliplrMethod setdiff1dMethod msortMethod argsortMethod lexsortMethod aroundMethod nanmaxMethod nanminMethod nanargmaxMethod nanargminMethod argmaxMethod argminProperty itemsizeMethod spacingMethod fixMethod ceilMethod diffProperty flatProperty realProperty baseMethod flipMethod deleteMethod amaxMethod aminMethod logical_xorMethod logical_orMethod logical_notMethod logical_andMethod logaddexpMethod logaddexp2Method logspaceMethod not_equalMethod equalMethod greater_equalMethod lessMethod less_equalMethod remainderMethod modMethod emptyMethod greaterMethod isfiniteMethod busday_countMethod repeatMethod varMethod random_sampleMethod randomMethod signMethod stdMethod absoluteMethod absMethod sortMethod randintMethod isrealMethod linspaceMethod gradientMethod allMethod sampleProperty TProperty imagMethod covMethod insertMethod logMethod log1pMethod exp2Method expm1Method expMethod arccosMethod cosMethod arcsinMethod sinMethod tanMethod fromiterMethod trim_zerosMethod diagflatMethod savetxtMethod count_nonzeroProperty sizeProperty shapeMethod reshapeMethod resizeMethod triuMethod trilMethod eyeMethod arangeMethod fill_diagonalMethod tileMethod saveMethod transposeMethod swapaxesMethod meshgridProperty mgridMethod rot90Method log2Method radiansMethod deg2radMethod rad2degMethod degreesMethod log10Method appendMethod cumprodProperty nbytesMethod tostringProperty dataMethod modfMethod fmodMethod tolistMethod datetime_as_stringMethod datetime_dataMethod array_splitMethod itemsetMethod floorMethod put_along_axisMethod cumsumMethod bincountMethod putMethod putmaskMethod takeMethod hypotMethod sqrtMethod squareMethod floor_divideMethod triMethod signbitMethod flattenMethod ravelMethod rollMethod isrealobjMethod diagMethod diagonalMethod quantileMethod onesMethod iscomplexobjMethod iscomplexMethod isscalarMethod divmodMethod isnatMethod percentileMethod isnanMethod divideMethod addMethod reciprocalMethod positiveMethod subtractMethod medianMethod isneginfMethod isposinfMethod float_powerMethod powerMethod negativeMethod maximumMethod averageMethod isinfMethod multiplyMethod busday_offsetMethod identityMethod interpMethod squeezeMethod get_printoptionsMethod savez_compressedMethod savezMethod loadMethod asfarrayMethod clipMethod arrayMethod array_equivMethod array_equalMethod frombufferMethod set_string_functionMethod matmulMethod genfromtxtMethod fromfunctionMethod asscalarMethod searchsortedMethod full_likeMethod fullMethod shares_memoryMethod ptpMethod digitizeMethod argwhereMethod geomspaceMethod zeros_likeMethod fabsMethod flatnonzeroMethod vstackMethod dstackMethod fromstringMethod tobytesMethod expand_dimsMethod ranfMethod arctanMethod itemMethod extractMethod compressMethod chooseMethod asarrayMethod asmatrixMethod allcloseMethod iscloseMethod anyMethod corrcoefMethod truncMethod prodMethod crossMethod true_divideMethod hsplitMethod splitMethod rintMethod ediff1dMethod lcmMethod gcdMethod cbrtMethod flipudProperty ndimMethod array2stringMethod set_printoptionsMethod whereMethod hstack
Char32 topics
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

NumPy | average method

schedule Aug 12, 2023
Last updated
local_offer
PythonNumPy
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Numpy's average(~) method computes the weighted average along the specified axis.

Parameters

1. a | array-like

The input array.

2. axis | None or int or tuple of int | optional

The axis along which to compute the mean.

Axis

Meaning

0

Row-wise computation of mean

1

Column-wise computation of mean

None

All values used to compute the mean

3. weights | axis | optional

The array containing the weights. The dimension must be 1D with size equal to that of a, or the exact same shape as a. By default, weights=None, that is, a simple mean will be computed.

4. return | boolean | optional

Whether you want the sum of weights returned. By default return=False.

Return value

If axis in unset, then a scalar is returned. Otherwise, a Numpy array of weighted averages is returned.

Examples

Basic usage

Consider the following:

a = np.array([1,2,3])
np.average(a, weights=[0,2,4])
2.6667

Here, the weighted average is:

(1*0 + 2*2 + 3*4) / (0+2+4) = 2.6667

Getting the sum of the weighted average

To get the sum of the weighted used (i.e. 0+2+4=6), set returned=True:

np.average([1,2,3], weights=[0,2,4], returned=True)
(2.6666666666666665, 6.0)

Computing the weighted average of a 2D array

Suppose we have the following 2D array:

a = np.array([[1,2],[3,4]])
a
array([[1, 2],
[3, 4]])

Weighted average of all values

Computing the weighted average of all values:

np.average(a, weights=[[5,6],[7,8]])
2.6923076923076925

Weighted average of each column

Computing the weighted average of each column, set axis=0:

np.average(a, weights=[[5,6],[7,8]], axis=0)
array([2.16666667, 3.14285714])

Weighted average of each row

Computing the weighted average of each row, set axis=1:

np.average(a, weights=[[5,6],[7,8]], axis=1)
array([1.54545455, 3.53333333])
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...