search
Search
Publish
Guest 0reps
Thanks for the thanks!
close
account_circle
Profile
exit_to_app
Sign out
search
keyboard_voice
close
Searching Tips
Search for a recipe: "Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview Doc Search Code Search Beta SORRY NOTHING FOUND!
mic
Start speaking... Voice search is only supported in Safari and Chrome.
Shrink
Navigate to
A
A
share
thumb_up_alt
bookmark
arrow_backShare Twitter Facebook

# NumPy | zeros method

Programming
chevron_right
Python
chevron_right
NumPy
chevron_right
Documentation
schedule Mar 10, 2022
Last updated
local_offer PythonNumPy
Tags

Numpy's `zeros(~)` method creates a Numpy array with all zeros as its entries.

# Parameters

1. `shape` | `int` or `array-like`

The desired shape of the Numpy array. Providing an `int` would return a one-dimensional flattened array.

2. `dtype`link | `string` or `type` | `optional`

The desired data type for the Numpy array. By default, `dtype=numpy.float64`. If you're sure that the new Numpy array will only contain integers, you should want to specify `dtype=int`.

# Return value

A Numpy array of zeroes, with the shape and type specified by the parameters.

# Examples

## Creating an one-dimensional Numpy array

To create a flattened Numpy array with 3 zeros:

``` np.zeros(3) array([0., 0., 0.]) ```

## Creating a Numpy array of type int

To create a flattened Numpy array with 3 zeroes of type `int`:

``` np.zeros(3, int) array([0, 0, 0]) ```

## Creating a two-dimensional Numpy array

### Using a tuple

To create a 2 by 3 (i.e. 2 rows and 3 columns) matrix filled with zeros using a tuple:

``` np.zeros((2,3)) array([[0., 0., 0.],       [0., 0., 0.]]) ```

### Using an array

To create a 2 by 3 (i.e. 2 rows and 3 columns) matrix filled with zeros using an array:

``` np.zeros([2,3]) array([[0., 0., 0.],       [0., 0., 0.]]) ```

Note that you could also use Numpy arrays as well.