search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
chevron_leftDocumentation
Method argpartition
NumPy Random Generator4 topics
Method choiceMethod dotMethod finfoMethod histogramMethod iinfoMethod maxMethod meanMethod placeMethod rootsMethod seedMethod uniformMethod viewMethod zerosMethod sumObject busdaycalendarMethod is_busdayProperty dtypeMethod uniqueMethod loadtxtMethod vsplitMethod fliplrMethod setdiff1dMethod msortMethod argsortMethod lexsortMethod aroundMethod nanmaxMethod nanminMethod nanargmaxMethod nanargminMethod argmaxMethod argminProperty itemsizeMethod spacingMethod fixMethod ceilMethod diffProperty flatProperty realProperty baseMethod flipMethod deleteMethod amaxMethod aminMethod logical_xorMethod logical_orMethod logical_notMethod logical_andMethod logaddexpMethod logaddexp2Method logspaceMethod not_equalMethod equalMethod greater_equalMethod lessMethod less_equalMethod remainderMethod modMethod emptyMethod greaterMethod isfiniteMethod busday_countMethod repeatMethod varMethod random_sampleMethod randomMethod signMethod stdMethod absoluteMethod absMethod sortMethod randintMethod isrealMethod linspaceMethod gradientMethod allMethod sampleProperty TProperty imagMethod covMethod insertMethod logMethod log1pMethod exp2Method expm1Method expMethod arccosMethod cosMethod arcsinMethod sinMethod tanMethod fromiterMethod trim_zerosMethod diagflatMethod savetxtMethod count_nonzeroProperty sizeProperty shapeMethod reshapeMethod resizeMethod triuMethod trilMethod eyeMethod arangeMethod fill_diagonalMethod tileMethod saveMethod transposeMethod swapaxesMethod meshgridProperty mgridMethod rot90Method log2Method radiansMethod deg2radMethod rad2degMethod degreesMethod log10Method appendMethod cumprodProperty nbytesMethod tostringProperty dataMethod modfMethod fmodMethod tolistMethod datetime_as_stringMethod datetime_dataMethod array_splitMethod itemsetMethod floorMethod put_along_axisMethod cumsumMethod bincountMethod putMethod putmaskMethod takeMethod hypotMethod sqrtMethod squareMethod floor_divideMethod triMethod signbitMethod flattenMethod ravelMethod rollMethod isrealobjMethod diagMethod diagonalMethod quantileMethod onesMethod iscomplexobjMethod iscomplexMethod isscalarMethod divmodMethod isnatMethod percentileMethod isnanMethod divideMethod addMethod reciprocalMethod positiveMethod subtractMethod medianMethod isneginfMethod isposinfMethod float_powerMethod powerMethod negativeMethod maximumMethod averageMethod isinfMethod multiplyMethod busday_offsetMethod identityMethod interpMethod squeezeMethod get_printoptionsMethod savez_compressedMethod savezMethod loadMethod asfarrayMethod clipMethod arrayMethod array_equivMethod array_equalMethod frombufferMethod set_string_functionMethod matmulMethod genfromtxtMethod fromfunctionMethod asscalarMethod searchsortedMethod full_likeMethod fullMethod shares_memoryMethod ptpMethod digitizeMethod argwhereMethod geomspaceMethod zeros_likeMethod fabsMethod flatnonzeroMethod vstackMethod dstackMethod fromstringMethod tobytesMethod expand_dimsMethod ranfMethod arctanMethod itemMethod extractMethod compressMethod chooseMethod asarrayMethod asmatrixMethod allcloseMethod iscloseMethod anyMethod corrcoefMethod truncMethod prodMethod crossMethod true_divideMethod hsplitMethod splitMethod rintMethod ediff1dMethod lcmMethod gcdMethod cbrtMethod flipudProperty ndimMethod array2stringMethod set_printoptionsMethod whereMethod hstack
Char32 topics
check_circle
Mark as learned
thumb_up
0
thumb_down
0
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

NumPy | load method

schedule Aug 10, 2023
Last updated
local_offer
PythonNumPy
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Numpy's load(~) method reads a file with extensions .npy and .npz and returns either a memory-map, a Numpy array or a dictionary-like of Numpy arrays.

Parameters

1. file | file-like object or string or pathlib.Path

The file to load.

2. mmap_mode | None or string | optional

Whether to return a memory-map or a Numpy array. Memory-maps come in handy when the data you wish to read is so large that it cannot fit in memory. Memory-maps are stored in disk, and data can be accessed via slicing syntax (e.g. [2:5]).

The allowed values are as follows:

Value

Description

r

Open file just for reading.

r+

Open file for both reading and writing.

w+

Open file for reading and writing

If file does not exist then a new file is created.

Writes will override existing content.

c

Writing is performed on data in memory, and not on the disk.

This means that the actual data is read-only.

None

Load data as a Numpy array.

By default, mmap_mode=None.

3. allow_pickle | boolean | optional

Whether or not to use pickling to load the array. If your data just consists of numeric data-types, then pickling is not required. By default, allow_pickle=True.

WARNING

If the dtype is numeric, then opt for allow_pickle=False.

As a general rule of thumb, pickles should not be used if they are not required since different versions of Python and Numpy may interprets pickles differently, and so you may not be able to load the files. Moreover, since reading pickled files involve running arbitrary code in the file, the reader will be susceptible to malicious attacks.

4. fix_imports | boolean | optional

This is only relevant if you are using Python 3 to read a pickled file that was generated using Python 2. If set to True, then such a read becomes possible. By default, fix_imports=True.

5. encoding | string | optional

This is only relevant if you are using Python 3 to read a pickled file that was generated using Python 2. The allowed values are "latin1", "ASCII", and "bytes". By default, encoding="ASCII".

Return value

The return type depends on whether you're reading a .npy file or .npz file as well as the supplied mmap_mode:

Action

Return type

Reading .npy with mmap_mode=None

Numpy array

Reading .npy with mmap_mode!=None

memmap

Reading .npz

Dictionary-like of Numpy arrays

Examples

Reading .npy files

Let's create a .npy file to read:

x = np.array([3,4,5])
np.save("my_data.npy", x)

This creates a file called "my_data.npy" in the same directory as the Python script.

To load this file as a Numpy array:

y = np.load("my_data.npy")
y
array([3, 4, 5])

To load this file as a memmap object:

y = np.load("my_data.npy", "r")
y
memmap([3, 4, 5])

Reading .npz files

Unlike .npy files, .npz contains a bundle of Numpy arrays.

To create a .npz file:

x = np.array([3,4,5])
y = np.array([6,7,8])
np.savez("my_data", my_x=x, my_y=y)

To read this .npz file:

my_arrays = np.load("my_data.npz")
print("x", my_arrays["my_x"])
print("y", my_arrays["my_y"])
x [3 4 5]
y [6 7 8]
robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
0
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!