search
Search
Login
Unlock 100+ guides
menu
menu
web
search toc
close
Comments
Log in or sign up
Cancel
Post
account_circle
Profile
exit_to_app
Sign out
What does this mean?
Why is this true?
Give me some examples!
search
keyboard_voice
close
Searching Tips
Search for a recipe:
"Creating a table in MySQL"
Search for an API documentation: "@append"
Search for code: "!dataframe"
Apply a tag filter: "#python"
Useful Shortcuts
/ to open search panel
Esc to close search panel
to navigate between search results
d to clear all current filters
Enter to expand content preview
icon_star
Doc Search
icon_star
Code Search Beta
SORRY NOTHING FOUND!
mic
Start speaking...
Voice search is only supported in Safari and Chrome.
Navigate to
chevron_leftDocumentation
Method argpartition
NumPy Random Generator4 topics
Method choiceMethod dotMethod finfoMethod histogramMethod iinfoMethod maxMethod meanMethod placeMethod rootsMethod seedMethod uniformMethod viewMethod zerosMethod sumObject busdaycalendarMethod is_busdayProperty dtypeMethod uniqueMethod loadtxtMethod vsplitMethod fliplrMethod setdiff1dMethod msortMethod argsortMethod lexsortMethod aroundMethod nanmaxMethod nanminMethod nanargmaxMethod nanargminMethod argmaxMethod argminProperty itemsizeMethod spacingMethod fixMethod ceilMethod diffProperty flatProperty realProperty baseMethod flipMethod deleteMethod amaxMethod aminMethod logical_xorMethod logical_orMethod logical_notMethod logical_andMethod logaddexpMethod logaddexp2Method logspaceMethod not_equalMethod equalMethod greater_equalMethod lessMethod less_equalMethod remainderMethod modMethod emptyMethod greaterMethod isfiniteMethod busday_countMethod repeatMethod varMethod random_sampleMethod randomMethod signMethod stdMethod absoluteMethod absMethod sortMethod randintMethod isrealMethod linspaceMethod gradientMethod allMethod sampleProperty TProperty imagMethod covMethod insertMethod logMethod log1pMethod exp2Method expm1Method expMethod arccosMethod cosMethod arcsinMethod sinMethod tanMethod fromiterMethod trim_zerosMethod diagflatMethod savetxtMethod count_nonzeroProperty sizeProperty shapeMethod reshapeMethod resizeMethod triuMethod trilMethod eyeMethod arangeMethod fill_diagonalMethod tileMethod saveMethod transposeMethod swapaxesMethod meshgridProperty mgridMethod rot90Method log2Method radiansMethod deg2radMethod rad2degMethod degreesMethod log10Method appendMethod cumprodProperty nbytesMethod tostringProperty dataMethod modfMethod fmodMethod tolistMethod datetime_as_stringMethod datetime_dataMethod array_splitMethod itemsetMethod floorMethod put_along_axisMethod cumsumMethod bincountMethod putMethod putmaskMethod takeMethod hypotMethod sqrtMethod squareMethod floor_divideMethod triMethod signbitMethod flattenMethod ravelMethod rollMethod isrealobjMethod diagMethod diagonalMethod quantileMethod onesMethod iscomplexobjMethod iscomplexMethod isscalarMethod divmodMethod isnatMethod percentileMethod isnanMethod divideMethod addMethod reciprocalMethod positiveMethod subtractMethod medianMethod isneginfMethod isposinfMethod float_powerMethod powerMethod negativeMethod maximumMethod averageMethod isinfMethod multiplyMethod busday_offsetMethod identityMethod interpMethod squeezeMethod get_printoptionsMethod savez_compressedMethod savezMethod loadMethod asfarrayMethod clipMethod arrayMethod array_equivMethod array_equalMethod frombufferMethod set_string_functionMethod matmulMethod genfromtxtMethod fromfunctionMethod asscalarMethod searchsortedMethod full_likeMethod fullMethod shares_memoryMethod ptpMethod digitizeMethod argwhereMethod geomspaceMethod zeros_likeMethod fabsMethod flatnonzeroMethod vstackMethod dstackMethod fromstringMethod tobytesMethod expand_dimsMethod ranfMethod arctanMethod itemMethod extractMethod compressMethod chooseMethod asarrayMethod asmatrixMethod allcloseMethod iscloseMethod anyMethod corrcoefMethod truncMethod prodMethod crossMethod true_divideMethod hsplitMethod splitMethod rintMethod ediff1dMethod lcmMethod gcdMethod cbrtMethod flipudProperty ndimMethod array2stringMethod set_printoptionsMethod whereMethod hstack
Char32 topics
check_circle
Mark as learned
thumb_up
0
thumb_down
1
chat_bubble_outline
0
Comment
auto_stories Bi-column layout
settings

NumPy | put method

schedule Aug 12, 2023
Last updated
local_offer
PythonNumPy
Tags
mode_heat
Master the mathematics behind data science with 100+ top-tier guides
Start your free 7-days trial now!

Numpy's put(~) sets a specific value in the input array. This is done in-place, that is, no new Numpy array is created.

Parameters

1. a | array-like

The input array. All input arrays are treated as a flattened array.

2. ind | array-like

The indices where the values will be set. Note that the indices apply to a flattened version of the input array. See examples below for clarification.

3. v | array-like

The values to set. If v is shorter than a, then v will be repeated to ensure the shape matches up.

4. mode | string | optional

Dictate what happens when ind parameter you specify is out of bounds:

Value

Description

"raise"

Out of bounds error will be thrown.

"wrap"

Cycles around the array.

"clip"

Last element of the array is targeted.

By default, mode="raise".

Return value

None - the setting is done in-place.

Examples

Basic usage

a = np.array([5,6,7,8])
np.put(a, 1, 9)
a
array([5, 9, 7, 8])

2D arrays

Consider the following 2D array:

a = np.array([[5,6],[7,8]])
a
array([[5, 6],
[7, 8]])

Setting a single value

a = np.array([[5,6],[7,8]])
a.put(3, 9)
a
array([[5, 6],
[7, 9]])

Setting multiple values

a = np.array([[5,6],[7,8]])
np.put(a, [1,0], 9)
a
array([[9, 9],
[7, 8]])

Here, note how [1,0] does not represent the 2nd row 1st column. Instead, it represents the 1st and 0th index of the flattened version of a. Therefore, we could have equivalently used [0,1] instead.

Different modes

Consider the following 2D array:

a = np.array([[5,6],[7,8]])
a
array([[5, 6],
[7, 8]])

Raise

a = np.array([[5,6],[7,8]])
np.put(a, [5], 9, mode="raise")
a
IndexError: index 5 is out of bounds for axis 0 with size 4

This error is raise because index 5 does not exist in the flattened array.

Wrap

a = np.array([[5,6],[7,8]])
np.put(a, [5], 9, mode="wrap")
a
array([[5, 9],
[7, 8]])

Here, we went one cycle around a, which has a size of 4, so the index 5 is converted to index 5-4=1.

Clip

a = np.array([[5,6],[7,8]])
np.put(a, [5], 9, mode="clip")
a
array([[5, 6],
[7, 9]])

Here, our specified index has exceeded the bounds, so the last index is targeted instead, which in this case is index 3.

robocat
Published by Isshin Inada
Edited by 0 others
Did you find this page useful?
thumb_up
thumb_down
Comment
Citation
Ask a question or leave a feedback...
thumb_up
0
thumb_down
1
chat_bubble_outline
0
settings
Enjoy our search
Hit / to insta-search docs and recipes!